Add Util.Digits modules
Contains views for seeing integers as lists of digits
This commit is contained in:
parent
cf3a81fa62
commit
fe4a20ade6
|
@ -26,6 +26,7 @@ depends = base
|
|||
modules = Runner
|
||||
, Util
|
||||
, Util.Eff
|
||||
, Util.Digits
|
||||
, Grid
|
||||
|
||||
-- main file (i.e. file to load at REPL)
|
||||
|
|
192
src/Util/Digits.md
Normal file
192
src/Util/Digits.md
Normal file
|
@ -0,0 +1,192 @@
|
|||
# Viewing Integers as lists of digits
|
||||
|
||||
```idris
|
||||
module Util.Digits
|
||||
|
||||
import Data.Monoid.Exponentiation
|
||||
```
|
||||
|
||||
<!-- idris
|
||||
import System
|
||||
|
||||
%default total
|
||||
-->
|
||||
|
||||
This module provides views and associated functionality for treating `Integers`
|
||||
as if they were lists of numbers.
|
||||
|
||||
Since `Integer` is a primitive type, that Idris can't directly reason about the
|
||||
structure of, we need to use some `believe_me`s, a hideously unsafe operation
|
||||
that completely bypasses the type checker, somewhere along the line. For
|
||||
teaching purposes, we'll do it here, but please consider a library like
|
||||
[prim](https://github.com/stefan-hoeck/idris2-prim) if you find yourself needing
|
||||
to prove properties about primitive types.
|
||||
|
||||
<!-- idris
|
||||
-- This mutual block isn't strictly required, but is useful for literate purposes
|
||||
mutual
|
||||
-->
|
||||
|
||||
## Primitive functionality
|
||||
|
||||
Take the integer log base 10 of an `Integer`
|
||||
|
||||
```idris
|
||||
log10 : Integer -> Nat
|
||||
log10 i = assert_total $ log10' i 0
|
||||
where
|
||||
covering
|
||||
log10' : Integer -> (acc : Nat) -> Nat
|
||||
log10' i acc =
|
||||
if i > 0
|
||||
then log10' (i `div` 10) (S acc)
|
||||
else acc
|
||||
```
|
||||
|
||||
## Ascending Order
|
||||
|
||||
View an integer as a list of digits, ordered from least significant digit to
|
||||
most significant digit.
|
||||
|
||||
For a clarifying example:
|
||||
|
||||
<!-- idris
|
||||
-- @@test Ascending Digits Example
|
||||
ascendingExample : IO Bool
|
||||
ascendingExample = do
|
||||
putStrLn "Expecting: \{show [5, 4, 3, 2, 1]}"
|
||||
putStrLn "Got: \{show . ascList $ ascending 12345}"
|
||||
pure $
|
||||
-->
|
||||
|
||||
```idris
|
||||
ascList (ascending 12345) == [5, 4, 3, 2, 1]
|
||||
```
|
||||
|
||||
The view itself, storing the current digit, and the rest of the number, both as
|
||||
a raw integer and by a recursive `Ascending`. Acts as a proof that the number
|
||||
can be reproduced by multiplying the rest by 10 and then adding the current
|
||||
digit.
|
||||
|
||||
```idris
|
||||
||| A view of an integer as a list of digits in order of ascending signifigance
|
||||
public export
|
||||
data Ascending : Integer -> Type where
|
||||
||| Indicates that the number was negative
|
||||
NegAsc : (rec : Lazy (Ascending (negate i))) -> Ascending i
|
||||
||| Indicates we have already seen all the digits of a number
|
||||
End : Ascending 0
|
||||
||| A digit and all the preceeding ones
|
||||
Next : (digit : Integer)
|
||||
-> (rest : Integer)
|
||||
-> (rec : Lazy (Ascending rest))
|
||||
-> Ascending (rest * 10 + digit)
|
||||
%name Ascending as, bs, cs
|
||||
```
|
||||
|
||||
Generate an `Ascending` from an integer.
|
||||
|
||||
```idris
|
||||
||| Covering function for `Ascending`
|
||||
export
|
||||
ascending : (i : Integer) -> Ascending i
|
||||
ascending i =
|
||||
if i < 0 then NegAsc (ascending (assert_smaller i $ negate i)) else
|
||||
let digit = i `mod` 10
|
||||
rest = i `div` 10
|
||||
in if rest == 0
|
||||
then believe_me $ Next digit rest (believe_me End)
|
||||
else believe_me $ Next digit rest (ascending (assert_smaller i rest))
|
||||
```
|
||||
|
||||
Convert an `Ascending` to a list
|
||||
|
||||
```idris
|
||||
export
|
||||
ascList : {i : Integer} -> Ascending i -> List Integer
|
||||
ascList as = reverse $ ascList' i as []
|
||||
where
|
||||
ascList' : (j : Integer) -> Ascending j -> (acc : List Integer)
|
||||
-> List Integer
|
||||
ascList' k (NegAsc rec) acc = ascList' (negate k) rec acc
|
||||
ascList' 0 End acc = acc
|
||||
ascList' ((rest * 10) + digit) (Next digit rest rec) acc =
|
||||
ascList' rest rec (digit :: acc)
|
||||
```
|
||||
|
||||
## Descending Order
|
||||
|
||||
View an integer as a list of digits, ordered from most significant digit to
|
||||
least significant digit.
|
||||
|
||||
For a clarifying example:
|
||||
|
||||
<!-- idris
|
||||
-- @@test Descending Digits Example
|
||||
descendingExample : IO Bool
|
||||
descendingExample = do
|
||||
putStrLn "Expecting: \{show [1, 2, 3, 4, 5]}"
|
||||
putStrLn "Got: \{show . decList $ descending 12345}"
|
||||
pure $
|
||||
-->
|
||||
|
||||
```idris
|
||||
decList (descending 12345) == [1, 2, 3, 4, 5]
|
||||
```
|
||||
|
||||
The view itself, storing the current digit, and the rest of the number, both as
|
||||
a raw integer and by a recursive `Ascending`. Acts as a proof that the number
|
||||
can be reproduced by appending the current digit to the rest of the number.
|
||||
|
||||
```idris
|
||||
||| A view of an integer as a list of digits in order of descending
|
||||
||| signifigance
|
||||
public export
|
||||
data Descending : Integer -> Type where
|
||||
||| Indicates that the number was negative
|
||||
NegDec : (rec : Lazy (Descending (negate i))) -> Descending i
|
||||
||| Indicates we have already seen all the digits of a number
|
||||
Start : Descending 0
|
||||
||| A digit and all the preceeding ones
|
||||
Prev : (magnitude : Nat)
|
||||
-> (digit : Integer)
|
||||
-> (rest : Integer)
|
||||
-> (rec : Lazy (Descending rest))
|
||||
-> Descending ((digit * 10 ^ magnitude) + rest)
|
||||
%name Descending ds, es, fs
|
||||
```
|
||||
|
||||
Generate a `Descending` from an `Integer`
|
||||
|
||||
```idris
|
||||
export
|
||||
descending : (i : Integer) -> Descending i
|
||||
descending i =
|
||||
if i < 0 then NegDec (descending (assert_smaller i $ negate i)) else
|
||||
let magnitude = log10 i
|
||||
in if magnitude == 0
|
||||
then believe_me $ Prev 0 0 0 Start
|
||||
else descending' magnitude i
|
||||
where
|
||||
descending' : (magnitude : Nat) -> (j : Integer) -> Descending j
|
||||
descending' 0 j = believe_me Start
|
||||
descending' magnitude@(S m) j =
|
||||
let digit = j `div` 10 ^ m
|
||||
rest = j - digit * 10 ^ m
|
||||
in believe_me $ Prev m digit rest (descending' m rest)
|
||||
```
|
||||
|
||||
Convert a `Descending` to a list
|
||||
|
||||
```idris
|
||||
export
|
||||
decList : {i : Integer} -> Descending i -> List Integer
|
||||
decList ds = reverse $ decList' ds []
|
||||
where
|
||||
decList' : {i : Integer} -> Descending i -> (acc : List Integer) ->
|
||||
List Integer
|
||||
decList' (NegDec rec) acc = decList' rec acc
|
||||
decList' Start acc = acc
|
||||
decList' (Prev magnitude digit rest rec) acc =
|
||||
decList' rec (digit :: acc)
|
||||
```
|
Loading…
Reference in a new issue