Compare commits
No commits in common. "82268350cbe7724e221ab29bd1e0ff1cc28e52ea" and "ed3d8a86cac30561e16c5d68f5342fc47e8e7b30" have entirely different histories.
82268350cb
...
ed3d8a86ca
3 changed files with 1 additions and 192 deletions
|
@ -26,7 +26,6 @@ depends = base
|
||||||
modules = Runner
|
modules = Runner
|
||||||
, Util
|
, Util
|
||||||
, Util.Eff
|
, Util.Eff
|
||||||
, Util.Digits
|
|
||||||
, Grid
|
, Grid
|
||||||
|
|
||||||
-- main file (i.e. file to load at REPL)
|
-- main file (i.e. file to load at REPL)
|
||||||
|
|
|
@ -1,189 +0,0 @@
|
||||||
# Viewing Integers as lists of digits
|
|
||||||
|
|
||||||
```idris
|
|
||||||
module Util.Digits
|
|
||||||
|
|
||||||
import Data.Monoid.Exponentiation
|
|
||||||
```
|
|
||||||
|
|
||||||
<!-- idris
|
|
||||||
-- TODO: Make these views sign-aware
|
|
||||||
import System
|
|
||||||
-->
|
|
||||||
|
|
||||||
This module provides views and associated functionality for treating `Integers`
|
|
||||||
as if they were lists of numbers.
|
|
||||||
|
|
||||||
Since `Integer` is a primitive type, that Idris can't directly reason about the
|
|
||||||
structure of, we need to use some `believe_me`s, a hideously unsafe operation
|
|
||||||
that completely bypasses the type checker, somewhere along the line. For
|
|
||||||
teaching purposes, we'll do it here, but please consider a library like
|
|
||||||
[prim](https://github.com/stefan-hoeck/idris2-prim) if you find yourself needing
|
|
||||||
to prove properties about primitive types.
|
|
||||||
|
|
||||||
<!-- idris
|
|
||||||
-- This mutual block isn't strictly required, but is useful for literate purposes
|
|
||||||
mutual
|
|
||||||
-->
|
|
||||||
|
|
||||||
## Primative functionality
|
|
||||||
|
|
||||||
Take the integer log base 10 of an `Integer`
|
|
||||||
|
|
||||||
```idris
|
|
||||||
log10 : Integer -> Nat
|
|
||||||
log10 i = log10' i 0
|
|
||||||
where
|
|
||||||
log10' : Integer -> (acc : Nat) -> Nat
|
|
||||||
log10' i acc =
|
|
||||||
if 10 ^ acc > i
|
|
||||||
then acc
|
|
||||||
else log10' i (acc + 1)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Ascending Order
|
|
||||||
|
|
||||||
View an integer as a list of digits, ordered from least significant digit to
|
|
||||||
most significant digit.
|
|
||||||
|
|
||||||
For a clarifying example:
|
|
||||||
|
|
||||||
<!-- idris
|
|
||||||
-- @@test Ascending Digits Example
|
|
||||||
ascendingExample : IO Bool
|
|
||||||
ascendingExample = do
|
|
||||||
putStrLn "Expecting: \{show [5, 4, 3, 2, 1]}"
|
|
||||||
putStrLn "Got: \{show . ascList $ ascending 12345}"
|
|
||||||
pure $
|
|
||||||
-->
|
|
||||||
|
|
||||||
```idris
|
|
||||||
ascList (ascending 12345) == [5, 4, 3, 2, 1]
|
|
||||||
```
|
|
||||||
|
|
||||||
The view itself, storing the current digit, and the rest of the number, both as
|
|
||||||
a raw integer and by a recursive `Ascending`. Acts as a proof that the
|
|
||||||
number can be reproduced by multiplying the rest by 10 and then adding the
|
|
||||||
current digit.
|
|
||||||
|
|
||||||
```idris
|
|
||||||
||| A view of an integer as a list of digits in order of ascending signifigance
|
|
||||||
public export
|
|
||||||
data Ascending : Integer -> Type where
|
|
||||||
||| Indicates that the number was negative
|
|
||||||
NegAsc : (rec : Lazy (Ascending (negate i))) -> Ascending i
|
|
||||||
||| Indicates we have already seen all the digits of a number
|
|
||||||
End : Ascending 0
|
|
||||||
||| A digit and all the preceeding ones
|
|
||||||
Next : (digit : Integer)
|
|
||||||
-> (rest : Integer)
|
|
||||||
-> (rec : Lazy (Ascending rest))
|
|
||||||
-> Ascending (rest * 10 + digit)
|
|
||||||
%name Ascending as, bs, cs
|
|
||||||
```
|
|
||||||
|
|
||||||
Generate an `Ascending` from an integer.
|
|
||||||
|
|
||||||
```idris
|
|
||||||
||| Covering function for `Ascending`
|
|
||||||
export
|
|
||||||
ascending : (i : Integer) -> Ascending i
|
|
||||||
ascending i =
|
|
||||||
if i < 0 then NegAsc (ascending (negate i)) else
|
|
||||||
let digit = i `mod` 10
|
|
||||||
rest = i `div` 10
|
|
||||||
in if rest == 0
|
|
||||||
then believe_me $ Next digit rest (believe_me End)
|
|
||||||
else believe_me $ Next digit rest (ascending rest)
|
|
||||||
```
|
|
||||||
|
|
||||||
Convert an `Ascending` to a list
|
|
||||||
```idris
|
|
||||||
export
|
|
||||||
ascList : {i : Integer} -> Ascending i -> List Integer
|
|
||||||
ascList as = reverse $ ascList' i as []
|
|
||||||
where
|
|
||||||
ascList' : (j : Integer) -> Ascending j -> (acc : List Integer)
|
|
||||||
-> List Integer
|
|
||||||
ascList' k (NegAsc rec) acc = ascList' (negate k) rec acc
|
|
||||||
ascList' 0 End acc = acc
|
|
||||||
ascList' ((rest * 10) + digit) (Next digit rest rec) acc =
|
|
||||||
ascList' rest rec (digit :: acc)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Descending Order
|
|
||||||
|
|
||||||
View an integer as a list of digits, ordered from most significant digit to
|
|
||||||
least significant digit.
|
|
||||||
|
|
||||||
For a clarifying example:
|
|
||||||
|
|
||||||
<!-- idris
|
|
||||||
-- @@test Descending Digits Example
|
|
||||||
descendingExample : IO Bool
|
|
||||||
descendingExample = do
|
|
||||||
putStrLn "Expecting: \{show [1, 2, 3, 4, 5]}"
|
|
||||||
putStrLn "Got: \{show . decList $ descending 12345}"
|
|
||||||
pure $
|
|
||||||
-->
|
|
||||||
|
|
||||||
```idris
|
|
||||||
decList (descending 12345) == [1, 2, 3, 4, 5]
|
|
||||||
```
|
|
||||||
|
|
||||||
The view itself, storing the current digit, and the rest of the number, both as
|
|
||||||
a raw integer and by a recursive `Ascending`. Acts as a proof that the
|
|
||||||
number can be reproduced by appending the current digit to the rest of the
|
|
||||||
number.
|
|
||||||
|
|
||||||
```idris
|
|
||||||
||| A view of an integer as a list of digits in order of descending signifigance
|
|
||||||
public export
|
|
||||||
data Descending : Integer -> Type where
|
|
||||||
||| Indicates that the number was negative
|
|
||||||
NegDec : (rec : Lazy (Descending (negate i))) -> Descending i
|
|
||||||
||| Indicates we have already seen all the digits of a number
|
|
||||||
Start : Descending 0
|
|
||||||
||| A digit and all the preceeding ones
|
|
||||||
Prev : (magnitude : Nat)
|
|
||||||
-> (digit : Integer)
|
|
||||||
-> (rest : Integer)
|
|
||||||
-> (rec : Lazy (Descending rest))
|
|
||||||
-> Descending ((digit * 10 ^ magnitude) + rest)
|
|
||||||
%name Descending ds, es, fs
|
|
||||||
```
|
|
||||||
|
|
||||||
Generate a `Descending` from an `Integer`
|
|
||||||
|
|
||||||
```idris
|
|
||||||
export
|
|
||||||
descending : (i : Integer) -> Descending i
|
|
||||||
descending i =
|
|
||||||
if i < 0 then NegDec (descending (negate i)) else
|
|
||||||
let magnitude = log10 i
|
|
||||||
in if magnitude == 0
|
|
||||||
then believe_me $ Prev 0 0 0 Start
|
|
||||||
else descending' magnitude i
|
|
||||||
where
|
|
||||||
descending' : (magnitude : Nat) -> (j : Integer) -> Descending j
|
|
||||||
descending' 0 j = believe_me Start
|
|
||||||
descending' magnitude@(S m) j =
|
|
||||||
let digit = j `div` 10 ^ m
|
|
||||||
rest = j - digit * 10 ^ m
|
|
||||||
in believe_me $ Prev m digit rest (descending' m rest)
|
|
||||||
```
|
|
||||||
|
|
||||||
Convert a `Descending` to a list
|
|
||||||
|
|
||||||
```idris
|
|
||||||
export
|
|
||||||
decList : {i : Integer} -> Descending i -> List Integer
|
|
||||||
decList ds = reverse $ decList' ds []
|
|
||||||
where
|
|
||||||
decList' : {i : Integer} -> Descending i -> (acc : List Integer) -> List Integer
|
|
||||||
decList' (NegDec rec) acc = decList' rec acc
|
|
||||||
decList' Start acc = acc
|
|
||||||
decList' (Prev magnitude digit rest rec) acc =
|
|
||||||
decList' rec (digit :: acc)
|
|
||||||
```
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Year 2015 Day 9
|
# Year 2016 Day 9
|
||||||
|
|
||||||
This day provides our first example of a graph traversal problem. We'll use a
|
This day provides our first example of a graph traversal problem. We'll use a
|
||||||
`Choose` based effectful breath first search to identify all the possible paths
|
`Choose` based effectful breath first search to identify all the possible paths
|
||||||
|
@ -292,4 +292,3 @@ public export
|
||||||
day9 : Day
|
day9 : Day
|
||||||
day9 = Both 9 part1 part2
|
day9 = Both 9 part1 part2
|
||||||
-->
|
-->
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue