Compare commits

...

4 commits

Author SHA1 Message Date
71c29bbea4 Year 2015 Day 10 Part 1 2025-01-20 02:00:11 -05:00
0f6d2c1869 Add lazy list methods to util 2025-01-20 02:00:11 -05:00
12305cc232 Add repeatN to Util 2025-01-20 02:00:11 -05:00
fe4a20ade6 Add Util.Digits modules
Contains views for seeing integers as lists of digits
2025-01-20 02:00:11 -05:00
5 changed files with 357 additions and 0 deletions

View file

@ -26,6 +26,7 @@ depends = base
modules = Runner
, Util
, Util.Eff
, Util.Digits
, Grid
-- main file (i.e. file to load at REPL)

View file

@ -9,10 +9,24 @@ module Util
import Data.SortedSet
import Data.String
import Data.List.Lazy
import Data.List1
%default total
```
## Functions
### repeatN
Recursively applies `f` to `seed` N times
```idris
export
repeatN : (times : Nat) -> (f : a -> a) -> (seed : a) -> a
repeatN 0 f seed = seed
repeatN (S times') f seed = repeatN times' f (f seed)
```
## Either
<!-- idris
@ -167,3 +181,32 @@ cartProd x y =
combine x [] rest = rest
combine x (y :: ys) rest = (x, y) :: combine x ys rest
```
### Concat
Lazily concatenate a LazyList of LazyLists
```idris
export
lazyConcat : LazyList (LazyList a) -> LazyList a
lazyConcat [] = []
lazyConcat (x :: xs) = x ++ lazyConcat xs
```
### Group
Lazily group a LazyList
```idris
export
lazyGroup : Eq a => LazyList a -> LazyList (List1 a)
lazyGroup [] = []
lazyGroup (x :: xs) = lazyGroup' xs x (x ::: [])
where
lazyGroup' : LazyList a -> (current : a) -> (acc : List1 a) -> LazyList (List1 a)
lazyGroup' [] current acc = [acc]
lazyGroup' (y :: ys) current acc@(head ::: tail) =
if y == current
then lazyGroup' ys current (head ::: (y :: tail))
else acc :: lazyGroup (y :: ys)
```

192
src/Util/Digits.md Normal file
View file

@ -0,0 +1,192 @@
# Viewing Integers as lists of digits
```idris
module Util.Digits
import Data.Monoid.Exponentiation
```
<!-- idris
import System
%default total
-->
This module provides views and associated functionality for treating `Integers`
as if they were lists of numbers.
Since `Integer` is a primitive type, that Idris can't directly reason about the
structure of, we need to use some `believe_me`s, a hideously unsafe operation
that completely bypasses the type checker, somewhere along the line. For
teaching purposes, we'll do it here, but please consider a library like
[prim](https://github.com/stefan-hoeck/idris2-prim) if you find yourself needing
to prove properties about primitive types.
<!-- idris
-- This mutual block isn't strictly required, but is useful for literate purposes
mutual
-->
## Primitive functionality
Take the integer log base 10 of an `Integer`
```idris
log10 : Integer -> Nat
log10 i = assert_total $ log10' i 0
where
covering
log10' : Integer -> (acc : Nat) -> Nat
log10' i acc =
if i > 0
then log10' (i `div` 10) (S acc)
else acc
```
## Ascending Order
View an integer as a list of digits, ordered from least significant digit to
most significant digit.
For a clarifying example:
<!-- idris
-- @@test Ascending Digits Example
ascendingExample : IO Bool
ascendingExample = do
putStrLn "Expecting: \{show [5, 4, 3, 2, 1]}"
putStrLn "Got: \{show . ascList $ ascending 12345}"
pure $
-->
```idris
ascList (ascending 12345) == [5, 4, 3, 2, 1]
```
The view itself, storing the current digit, and the rest of the number, both as
a raw integer and by a recursive `Ascending`. Acts as a proof that the number
can be reproduced by multiplying the rest by 10 and then adding the current
digit.
```idris
||| A view of an integer as a list of digits in order of ascending signifigance
public export
data Ascending : Integer -> Type where
||| Indicates that the number was negative
NegAsc : (rec : Lazy (Ascending (negate i))) -> Ascending i
||| Indicates we have already seen all the digits of a number
End : Ascending 0
||| A digit and all the preceeding ones
Next : (digit : Integer)
-> (rest : Integer)
-> (rec : Lazy (Ascending rest))
-> Ascending (rest * 10 + digit)
%name Ascending as, bs, cs
```
Generate an `Ascending` from an integer.
```idris
||| Covering function for `Ascending`
export
ascending : (i : Integer) -> Ascending i
ascending i =
if i < 0 then NegAsc (ascending (assert_smaller i $ negate i)) else
let digit = i `mod` 10
rest = i `div` 10
in if rest == 0
then believe_me $ Next digit rest (believe_me End)
else believe_me $ Next digit rest (ascending (assert_smaller i rest))
```
Convert an `Ascending` to a list
```idris
export
ascList : {i : Integer} -> Ascending i -> List Integer
ascList as = reverse $ ascList' i as []
where
ascList' : (j : Integer) -> Ascending j -> (acc : List Integer)
-> List Integer
ascList' k (NegAsc rec) acc = ascList' (negate k) rec acc
ascList' 0 End acc = acc
ascList' ((rest * 10) + digit) (Next digit rest rec) acc =
ascList' rest rec (digit :: acc)
```
## Descending Order
View an integer as a list of digits, ordered from most significant digit to
least significant digit.
For a clarifying example:
<!-- idris
-- @@test Descending Digits Example
descendingExample : IO Bool
descendingExample = do
putStrLn "Expecting: \{show [1, 2, 3, 4, 5]}"
putStrLn "Got: \{show . decList $ descending 12345}"
pure $
-->
```idris
decList (descending 12345) == [1, 2, 3, 4, 5]
```
The view itself, storing the current digit, and the rest of the number, both as
a raw integer and by a recursive `Ascending`. Acts as a proof that the number
can be reproduced by appending the current digit to the rest of the number.
```idris
||| A view of an integer as a list of digits in order of descending
||| signifigance
public export
data Descending : Integer -> Type where
||| Indicates that the number was negative
NegDec : (rec : Lazy (Descending (negate i))) -> Descending i
||| Indicates we have already seen all the digits of a number
Start : Descending 0
||| A digit and all the preceeding ones
Prev : (magnitude : Nat)
-> (digit : Integer)
-> (rest : Integer)
-> (rec : Lazy (Descending rest))
-> Descending ((digit * 10 ^ magnitude) + rest)
%name Descending ds, es, fs
```
Generate a `Descending` from an `Integer`
```idris
export
descending : (i : Integer) -> Descending i
descending i =
if i < 0 then NegDec (descending (assert_smaller i $ negate i)) else
let magnitude = log10 i
in if magnitude == 0
then believe_me $ Prev 0 0 0 Start
else descending' magnitude i
where
descending' : (magnitude : Nat) -> (j : Integer) -> Descending j
descending' 0 j = believe_me Start
descending' magnitude@(S m) j =
let digit = j `div` 10 ^ m
rest = j - digit * 10 ^ m
in believe_me $ Prev m digit rest (descending' m rest)
```
Convert a `Descending` to a list
```idris
export
decList : {i : Integer} -> Descending i -> List Integer
decList ds = reverse $ decList' ds []
where
decList' : {i : Integer} -> Descending i -> (acc : List Integer) ->
List Integer
decList' (NegDec rec) acc = decList' rec acc
decList' Start acc = acc
decList' (Prev magnitude digit rest rec) acc =
decList' rec (digit :: acc)
```

View file

@ -16,6 +16,7 @@ import Years.Y2015.Day6
import Years.Y2015.Day7
import Years.Y2015.Day8
import Years.Y2015.Day9
import Years.Y2015.Day10
-->
# Days
@ -80,6 +81,12 @@ y2015 = MkYear 2015 [
, day9
```
## [Day 10](Y2015/Day10.md)
```idris
, day10
```
```idris
]
```

114
src/Years/Y2015/Day10.md Normal file
View file

@ -0,0 +1,114 @@
# Year 2015 Day 10
This day doesn't really add anything new, but we will show off our new views for
viewing integers as lists of digits.
<!-- idris
module Years.Y2015.Day10
import Control.Eff
import Runner
-->
```idris
import Data.String
import Data.List1
import Data.List.Lazy
import Data.Monoid.Exponentiation
import Data.Nat.Views
import Util
import Util.Digits
```
<!-- idris
%default total
-->
# Solver Functions
Produce a lazy lists of the digits of a number, in descending order of
significance. This effectively translates our new
[`Descending`](../../Util/Digits.md) view to a `LazyList`.
```idris
lazyDigits : Integer -> LazyList Integer
lazyDigits i with (descending i)
lazyDigits i | (NegDec rec) = lazyDigits _ | rec
lazyDigits 0 | Start = []
lazyDigits ((digit * (10 ^ magnitude)) + rest) | (Prev _ digit rest rec) =
digit :: lazyDigits _ | rec
```
Apply the look-and-say rule to list of digits. We operate in the list-of-digits
space for efficiency, this number will grow into the hundreds of thousands of
digits, and Idris is currently lacking some needed primitive operations to
perform this operation in `Integer` space reasonably efficiently. A `LazyList`
is used here to avoid having to actually instantiate the entirety of these
reasonably large lists.
```idris
lookAndSay : LazyList Integer -> LazyList Integer
lookAndSay digits =
-- Flatten the list once more
lazyConcat
-- Convert the produced numbers into lists of their digits
. map lazyDigits
-- re-flatten our list
. lazyConcat
-- Count the number of occurrences of each digit and emit [occurances, digit]
. map (\xs@(head ::: tail) =>
(the (LazyList _) [natToInteger $ length xs, head]))
-- Group identical digits
. lazyGroup
$ digits
```
Apply the look-and-say rule to an integer, for repl testing
```idris
lookAndSay' : Integer -> Integer
lookAndSay' i =
let digits = lazyDigits i
res = lookAndSay digits
in unDigits res 0
where
unDigits : LazyList Integer -> (acc : Integer) -> Integer
unDigits [] acc = acc
unDigits (x :: xs) acc = unDigits xs (acc * 10 + x)
```
Repeatedly apply `lookAndSay` to a seed value, with logging
```idris
repeatLogged : Has Logger fs =>
(count : Nat) -> (seed : LazyList Integer) -> Eff fs $ LazyList Integer
repeatLogged 0 seed = pure seed
repeatLogged (S k) seed = do
trace "Remaining iterations: \{show (S k)} digits: \{show . count (const True) $ seed}"
repeatLogged k (lookAndSay seed)
```
# Part Functions
## Part 1
Parse our input, convert it into a list of digits, then run our `lookAndSay`
function on it 40 times, and count the output digits.
```idris
part1 : Eff (PartEff String) (Nat, ())
part1 = do
input <- askAt "input" >>= (note "Invalid input" . parsePositive)
let input = lazyDigits input
info "Input: \{show input}"
output <- repeatLogged 40 input
pure (count (const True) output, ())
```
<!-- idris
public export
day10 : Day
day10 = First 10 part1
-->