Compare commits
4 commits
bfe2b577c1
...
71c29bbea4
Author | SHA1 | Date | |
---|---|---|---|
71c29bbea4 | |||
0f6d2c1869 | |||
12305cc232 | |||
fe4a20ade6 |
5 changed files with 357 additions and 0 deletions
|
@ -26,6 +26,7 @@ depends = base
|
||||||
modules = Runner
|
modules = Runner
|
||||||
, Util
|
, Util
|
||||||
, Util.Eff
|
, Util.Eff
|
||||||
|
, Util.Digits
|
||||||
, Grid
|
, Grid
|
||||||
|
|
||||||
-- main file (i.e. file to load at REPL)
|
-- main file (i.e. file to load at REPL)
|
||||||
|
|
43
src/Util.md
43
src/Util.md
|
@ -9,10 +9,24 @@ module Util
|
||||||
import Data.SortedSet
|
import Data.SortedSet
|
||||||
import Data.String
|
import Data.String
|
||||||
import Data.List.Lazy
|
import Data.List.Lazy
|
||||||
|
import Data.List1
|
||||||
|
|
||||||
%default total
|
%default total
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Functions
|
||||||
|
|
||||||
|
### repeatN
|
||||||
|
|
||||||
|
Recursively applies `f` to `seed` N times
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
repeatN : (times : Nat) -> (f : a -> a) -> (seed : a) -> a
|
||||||
|
repeatN 0 f seed = seed
|
||||||
|
repeatN (S times') f seed = repeatN times' f (f seed)
|
||||||
|
```
|
||||||
|
|
||||||
## Either
|
## Either
|
||||||
|
|
||||||
<!-- idris
|
<!-- idris
|
||||||
|
@ -167,3 +181,32 @@ cartProd x y =
|
||||||
combine x [] rest = rest
|
combine x [] rest = rest
|
||||||
combine x (y :: ys) rest = (x, y) :: combine x ys rest
|
combine x (y :: ys) rest = (x, y) :: combine x ys rest
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Concat
|
||||||
|
|
||||||
|
Lazily concatenate a LazyList of LazyLists
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
lazyConcat : LazyList (LazyList a) -> LazyList a
|
||||||
|
lazyConcat [] = []
|
||||||
|
lazyConcat (x :: xs) = x ++ lazyConcat xs
|
||||||
|
```
|
||||||
|
|
||||||
|
### Group
|
||||||
|
|
||||||
|
Lazily group a LazyList
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
lazyGroup : Eq a => LazyList a -> LazyList (List1 a)
|
||||||
|
lazyGroup [] = []
|
||||||
|
lazyGroup (x :: xs) = lazyGroup' xs x (x ::: [])
|
||||||
|
where
|
||||||
|
lazyGroup' : LazyList a -> (current : a) -> (acc : List1 a) -> LazyList (List1 a)
|
||||||
|
lazyGroup' [] current acc = [acc]
|
||||||
|
lazyGroup' (y :: ys) current acc@(head ::: tail) =
|
||||||
|
if y == current
|
||||||
|
then lazyGroup' ys current (head ::: (y :: tail))
|
||||||
|
else acc :: lazyGroup (y :: ys)
|
||||||
|
```
|
||||||
|
|
192
src/Util/Digits.md
Normal file
192
src/Util/Digits.md
Normal file
|
@ -0,0 +1,192 @@
|
||||||
|
# Viewing Integers as lists of digits
|
||||||
|
|
||||||
|
```idris
|
||||||
|
module Util.Digits
|
||||||
|
|
||||||
|
import Data.Monoid.Exponentiation
|
||||||
|
```
|
||||||
|
|
||||||
|
<!-- idris
|
||||||
|
import System
|
||||||
|
|
||||||
|
%default total
|
||||||
|
-->
|
||||||
|
|
||||||
|
This module provides views and associated functionality for treating `Integers`
|
||||||
|
as if they were lists of numbers.
|
||||||
|
|
||||||
|
Since `Integer` is a primitive type, that Idris can't directly reason about the
|
||||||
|
structure of, we need to use some `believe_me`s, a hideously unsafe operation
|
||||||
|
that completely bypasses the type checker, somewhere along the line. For
|
||||||
|
teaching purposes, we'll do it here, but please consider a library like
|
||||||
|
[prim](https://github.com/stefan-hoeck/idris2-prim) if you find yourself needing
|
||||||
|
to prove properties about primitive types.
|
||||||
|
|
||||||
|
<!-- idris
|
||||||
|
-- This mutual block isn't strictly required, but is useful for literate purposes
|
||||||
|
mutual
|
||||||
|
-->
|
||||||
|
|
||||||
|
## Primitive functionality
|
||||||
|
|
||||||
|
Take the integer log base 10 of an `Integer`
|
||||||
|
|
||||||
|
```idris
|
||||||
|
log10 : Integer -> Nat
|
||||||
|
log10 i = assert_total $ log10' i 0
|
||||||
|
where
|
||||||
|
covering
|
||||||
|
log10' : Integer -> (acc : Nat) -> Nat
|
||||||
|
log10' i acc =
|
||||||
|
if i > 0
|
||||||
|
then log10' (i `div` 10) (S acc)
|
||||||
|
else acc
|
||||||
|
```
|
||||||
|
|
||||||
|
## Ascending Order
|
||||||
|
|
||||||
|
View an integer as a list of digits, ordered from least significant digit to
|
||||||
|
most significant digit.
|
||||||
|
|
||||||
|
For a clarifying example:
|
||||||
|
|
||||||
|
<!-- idris
|
||||||
|
-- @@test Ascending Digits Example
|
||||||
|
ascendingExample : IO Bool
|
||||||
|
ascendingExample = do
|
||||||
|
putStrLn "Expecting: \{show [5, 4, 3, 2, 1]}"
|
||||||
|
putStrLn "Got: \{show . ascList $ ascending 12345}"
|
||||||
|
pure $
|
||||||
|
-->
|
||||||
|
|
||||||
|
```idris
|
||||||
|
ascList (ascending 12345) == [5, 4, 3, 2, 1]
|
||||||
|
```
|
||||||
|
|
||||||
|
The view itself, storing the current digit, and the rest of the number, both as
|
||||||
|
a raw integer and by a recursive `Ascending`. Acts as a proof that the number
|
||||||
|
can be reproduced by multiplying the rest by 10 and then adding the current
|
||||||
|
digit.
|
||||||
|
|
||||||
|
```idris
|
||||||
|
||| A view of an integer as a list of digits in order of ascending signifigance
|
||||||
|
public export
|
||||||
|
data Ascending : Integer -> Type where
|
||||||
|
||| Indicates that the number was negative
|
||||||
|
NegAsc : (rec : Lazy (Ascending (negate i))) -> Ascending i
|
||||||
|
||| Indicates we have already seen all the digits of a number
|
||||||
|
End : Ascending 0
|
||||||
|
||| A digit and all the preceeding ones
|
||||||
|
Next : (digit : Integer)
|
||||||
|
-> (rest : Integer)
|
||||||
|
-> (rec : Lazy (Ascending rest))
|
||||||
|
-> Ascending (rest * 10 + digit)
|
||||||
|
%name Ascending as, bs, cs
|
||||||
|
```
|
||||||
|
|
||||||
|
Generate an `Ascending` from an integer.
|
||||||
|
|
||||||
|
```idris
|
||||||
|
||| Covering function for `Ascending`
|
||||||
|
export
|
||||||
|
ascending : (i : Integer) -> Ascending i
|
||||||
|
ascending i =
|
||||||
|
if i < 0 then NegAsc (ascending (assert_smaller i $ negate i)) else
|
||||||
|
let digit = i `mod` 10
|
||||||
|
rest = i `div` 10
|
||||||
|
in if rest == 0
|
||||||
|
then believe_me $ Next digit rest (believe_me End)
|
||||||
|
else believe_me $ Next digit rest (ascending (assert_smaller i rest))
|
||||||
|
```
|
||||||
|
|
||||||
|
Convert an `Ascending` to a list
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
ascList : {i : Integer} -> Ascending i -> List Integer
|
||||||
|
ascList as = reverse $ ascList' i as []
|
||||||
|
where
|
||||||
|
ascList' : (j : Integer) -> Ascending j -> (acc : List Integer)
|
||||||
|
-> List Integer
|
||||||
|
ascList' k (NegAsc rec) acc = ascList' (negate k) rec acc
|
||||||
|
ascList' 0 End acc = acc
|
||||||
|
ascList' ((rest * 10) + digit) (Next digit rest rec) acc =
|
||||||
|
ascList' rest rec (digit :: acc)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Descending Order
|
||||||
|
|
||||||
|
View an integer as a list of digits, ordered from most significant digit to
|
||||||
|
least significant digit.
|
||||||
|
|
||||||
|
For a clarifying example:
|
||||||
|
|
||||||
|
<!-- idris
|
||||||
|
-- @@test Descending Digits Example
|
||||||
|
descendingExample : IO Bool
|
||||||
|
descendingExample = do
|
||||||
|
putStrLn "Expecting: \{show [1, 2, 3, 4, 5]}"
|
||||||
|
putStrLn "Got: \{show . decList $ descending 12345}"
|
||||||
|
pure $
|
||||||
|
-->
|
||||||
|
|
||||||
|
```idris
|
||||||
|
decList (descending 12345) == [1, 2, 3, 4, 5]
|
||||||
|
```
|
||||||
|
|
||||||
|
The view itself, storing the current digit, and the rest of the number, both as
|
||||||
|
a raw integer and by a recursive `Ascending`. Acts as a proof that the number
|
||||||
|
can be reproduced by appending the current digit to the rest of the number.
|
||||||
|
|
||||||
|
```idris
|
||||||
|
||| A view of an integer as a list of digits in order of descending
|
||||||
|
||| signifigance
|
||||||
|
public export
|
||||||
|
data Descending : Integer -> Type where
|
||||||
|
||| Indicates that the number was negative
|
||||||
|
NegDec : (rec : Lazy (Descending (negate i))) -> Descending i
|
||||||
|
||| Indicates we have already seen all the digits of a number
|
||||||
|
Start : Descending 0
|
||||||
|
||| A digit and all the preceeding ones
|
||||||
|
Prev : (magnitude : Nat)
|
||||||
|
-> (digit : Integer)
|
||||||
|
-> (rest : Integer)
|
||||||
|
-> (rec : Lazy (Descending rest))
|
||||||
|
-> Descending ((digit * 10 ^ magnitude) + rest)
|
||||||
|
%name Descending ds, es, fs
|
||||||
|
```
|
||||||
|
|
||||||
|
Generate a `Descending` from an `Integer`
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
descending : (i : Integer) -> Descending i
|
||||||
|
descending i =
|
||||||
|
if i < 0 then NegDec (descending (assert_smaller i $ negate i)) else
|
||||||
|
let magnitude = log10 i
|
||||||
|
in if magnitude == 0
|
||||||
|
then believe_me $ Prev 0 0 0 Start
|
||||||
|
else descending' magnitude i
|
||||||
|
where
|
||||||
|
descending' : (magnitude : Nat) -> (j : Integer) -> Descending j
|
||||||
|
descending' 0 j = believe_me Start
|
||||||
|
descending' magnitude@(S m) j =
|
||||||
|
let digit = j `div` 10 ^ m
|
||||||
|
rest = j - digit * 10 ^ m
|
||||||
|
in believe_me $ Prev m digit rest (descending' m rest)
|
||||||
|
```
|
||||||
|
|
||||||
|
Convert a `Descending` to a list
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
decList : {i : Integer} -> Descending i -> List Integer
|
||||||
|
decList ds = reverse $ decList' ds []
|
||||||
|
where
|
||||||
|
decList' : {i : Integer} -> Descending i -> (acc : List Integer) ->
|
||||||
|
List Integer
|
||||||
|
decList' (NegDec rec) acc = decList' rec acc
|
||||||
|
decList' Start acc = acc
|
||||||
|
decList' (Prev magnitude digit rest rec) acc =
|
||||||
|
decList' rec (digit :: acc)
|
||||||
|
```
|
|
@ -16,6 +16,7 @@ import Years.Y2015.Day6
|
||||||
import Years.Y2015.Day7
|
import Years.Y2015.Day7
|
||||||
import Years.Y2015.Day8
|
import Years.Y2015.Day8
|
||||||
import Years.Y2015.Day9
|
import Years.Y2015.Day9
|
||||||
|
import Years.Y2015.Day10
|
||||||
-->
|
-->
|
||||||
|
|
||||||
# Days
|
# Days
|
||||||
|
@ -80,6 +81,12 @@ y2015 = MkYear 2015 [
|
||||||
, day9
|
, day9
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## [Day 10](Y2015/Day10.md)
|
||||||
|
|
||||||
|
```idris
|
||||||
|
, day10
|
||||||
|
```
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
114
src/Years/Y2015/Day10.md
Normal file
114
src/Years/Y2015/Day10.md
Normal file
|
@ -0,0 +1,114 @@
|
||||||
|
# Year 2015 Day 10
|
||||||
|
|
||||||
|
This day doesn't really add anything new, but we will show off our new views for
|
||||||
|
viewing integers as lists of digits.
|
||||||
|
|
||||||
|
<!-- idris
|
||||||
|
module Years.Y2015.Day10
|
||||||
|
|
||||||
|
import Control.Eff
|
||||||
|
|
||||||
|
import Runner
|
||||||
|
-->
|
||||||
|
|
||||||
|
```idris
|
||||||
|
import Data.String
|
||||||
|
import Data.List1
|
||||||
|
import Data.List.Lazy
|
||||||
|
import Data.Monoid.Exponentiation
|
||||||
|
import Data.Nat.Views
|
||||||
|
|
||||||
|
import Util
|
||||||
|
import Util.Digits
|
||||||
|
```
|
||||||
|
|
||||||
|
<!-- idris
|
||||||
|
%default total
|
||||||
|
-->
|
||||||
|
|
||||||
|
# Solver Functions
|
||||||
|
|
||||||
|
Produce a lazy lists of the digits of a number, in descending order of
|
||||||
|
significance. This effectively translates our new
|
||||||
|
[`Descending`](../../Util/Digits.md) view to a `LazyList`.
|
||||||
|
|
||||||
|
```idris
|
||||||
|
lazyDigits : Integer -> LazyList Integer
|
||||||
|
lazyDigits i with (descending i)
|
||||||
|
lazyDigits i | (NegDec rec) = lazyDigits _ | rec
|
||||||
|
lazyDigits 0 | Start = []
|
||||||
|
lazyDigits ((digit * (10 ^ magnitude)) + rest) | (Prev _ digit rest rec) =
|
||||||
|
digit :: lazyDigits _ | rec
|
||||||
|
```
|
||||||
|
|
||||||
|
Apply the look-and-say rule to list of digits. We operate in the list-of-digits
|
||||||
|
space for efficiency, this number will grow into the hundreds of thousands of
|
||||||
|
digits, and Idris is currently lacking some needed primitive operations to
|
||||||
|
perform this operation in `Integer` space reasonably efficiently. A `LazyList`
|
||||||
|
is used here to avoid having to actually instantiate the entirety of these
|
||||||
|
reasonably large lists.
|
||||||
|
|
||||||
|
```idris
|
||||||
|
lookAndSay : LazyList Integer -> LazyList Integer
|
||||||
|
lookAndSay digits =
|
||||||
|
-- Flatten the list once more
|
||||||
|
lazyConcat
|
||||||
|
-- Convert the produced numbers into lists of their digits
|
||||||
|
. map lazyDigits
|
||||||
|
-- re-flatten our list
|
||||||
|
. lazyConcat
|
||||||
|
-- Count the number of occurrences of each digit and emit [occurances, digit]
|
||||||
|
. map (\xs@(head ::: tail) =>
|
||||||
|
(the (LazyList _) [natToInteger $ length xs, head]))
|
||||||
|
-- Group identical digits
|
||||||
|
. lazyGroup
|
||||||
|
$ digits
|
||||||
|
```
|
||||||
|
|
||||||
|
Apply the look-and-say rule to an integer, for repl testing
|
||||||
|
|
||||||
|
```idris
|
||||||
|
lookAndSay' : Integer -> Integer
|
||||||
|
lookAndSay' i =
|
||||||
|
let digits = lazyDigits i
|
||||||
|
res = lookAndSay digits
|
||||||
|
in unDigits res 0
|
||||||
|
where
|
||||||
|
unDigits : LazyList Integer -> (acc : Integer) -> Integer
|
||||||
|
unDigits [] acc = acc
|
||||||
|
unDigits (x :: xs) acc = unDigits xs (acc * 10 + x)
|
||||||
|
```
|
||||||
|
|
||||||
|
Repeatedly apply `lookAndSay` to a seed value, with logging
|
||||||
|
|
||||||
|
```idris
|
||||||
|
repeatLogged : Has Logger fs =>
|
||||||
|
(count : Nat) -> (seed : LazyList Integer) -> Eff fs $ LazyList Integer
|
||||||
|
repeatLogged 0 seed = pure seed
|
||||||
|
repeatLogged (S k) seed = do
|
||||||
|
trace "Remaining iterations: \{show (S k)} digits: \{show . count (const True) $ seed}"
|
||||||
|
repeatLogged k (lookAndSay seed)
|
||||||
|
```
|
||||||
|
|
||||||
|
# Part Functions
|
||||||
|
|
||||||
|
## Part 1
|
||||||
|
|
||||||
|
Parse our input, convert it into a list of digits, then run our `lookAndSay`
|
||||||
|
function on it 40 times, and count the output digits.
|
||||||
|
|
||||||
|
```idris
|
||||||
|
part1 : Eff (PartEff String) (Nat, ())
|
||||||
|
part1 = do
|
||||||
|
input <- askAt "input" >>= (note "Invalid input" . parsePositive)
|
||||||
|
let input = lazyDigits input
|
||||||
|
info "Input: \{show input}"
|
||||||
|
output <- repeatLogged 40 input
|
||||||
|
pure (count (const True) output, ())
|
||||||
|
```
|
||||||
|
|
||||||
|
<!-- idris
|
||||||
|
public export
|
||||||
|
day10 : Day
|
||||||
|
day10 = First 10 part1
|
||||||
|
-->
|
Loading…
Add table
Reference in a new issue