Compare commits
No commits in common. "c47f522c50f7f7a764afa5f786697df5ed6acc96" and "13b05ceb86a5cf04ce9ca0bb535b91760851be7e" have entirely different histories.
c47f522c50
...
13b05ceb86
18 changed files with 431 additions and 374 deletions
68
README.md
68
README.md
|
@ -1,25 +1,10 @@
|
||||||
# Advent
|
# Advent
|
||||||
|
|
||||||
The goal of this project is to get all 500 currently available stars in the form
|
The goal of this project is to get all 500 currently available stars in the form
|
||||||
of one single Idris application, and thoroughly document the results as literate
|
of one single idris application, and thoroughly document the results as literate
|
||||||
Idris files.
|
idris files.
|
||||||
|
|
||||||
## Authors Note
|
# Index of non-day modules
|
||||||
|
|
||||||
The solutions contained in this project are intended to be read in sequential
|
|
||||||
order, though can reasonably be read in any order if you have a good level of
|
|
||||||
familiarity with more advanced functional programming topics.
|
|
||||||
|
|
||||||
The solutions will involve progressively more advanced topics as day and year
|
|
||||||
number increase, though I try not to introduce too much within the scope of any
|
|
||||||
one day.
|
|
||||||
|
|
||||||
Suggestions and other feedback are highly welcome, please reach out to me via
|
|
||||||
any platform you know me on, or send an email to the
|
|
||||||
[~thatonelutenist/public-inbox](https://lists.sr.ht/~thatonelutenist/public-inbox)
|
|
||||||
mailing list on source hut.
|
|
||||||
|
|
||||||
## Index of non-day modules
|
|
||||||
|
|
||||||
- [Runner](src/Runner.md)
|
- [Runner](src/Runner.md)
|
||||||
|
|
||||||
|
@ -41,61 +26,16 @@ solution.
|
||||||
Extend the functionality of the effects included in the
|
Extend the functionality of the effects included in the
|
||||||
[eff](https://github.com/stefan-hoeck/idris2-eff/) library
|
[eff](https://github.com/stefan-hoeck/idris2-eff/) library
|
||||||
|
|
||||||
- [Util.Digits](src/Util/Digits.md)
|
# Index of years and days
|
||||||
|
|
||||||
Provide views that enable recursively pattern matching numbers as lists of
|
|
||||||
digits, in both ascending and descending order of significance.
|
|
||||||
|
|
||||||
## Index of years and days
|
|
||||||
|
|
||||||
- 2015
|
- 2015
|
||||||
- [Day 1](src/Years/Y2015/Day1.md)
|
- [Day 1](src/Years/Y2015/Day1.md)
|
||||||
|
|
||||||
Warm up problem, breaks in our new runner and not much else interesting.
|
|
||||||
|
|
||||||
- [Day 2](src/Years/Y2015/Day2.md)
|
- [Day 2](src/Years/Y2015/Day2.md)
|
||||||
|
|
||||||
An early hint of effectful parsing.
|
|
||||||
|
|
||||||
- [Day 3](src/Years/Y2015/Day3.md)
|
- [Day 3](src/Years/Y2015/Day3.md)
|
||||||
|
|
||||||
Peculiarities of writing mutually recursive functions in dependently typed
|
|
||||||
languages.
|
|
||||||
|
|
||||||
- [Day 4](src/Years/Y2015/Day4.md)
|
- [Day 4](src/Years/Y2015/Day4.md)
|
||||||
|
|
||||||
Basic FFI to openssl to steal its MD5 function for Idris's use.
|
|
||||||
|
|
||||||
- [Day 5](src/Years/Y2015/Day5.md)
|
- [Day 5](src/Years/Y2015/Day5.md)
|
||||||
|
|
||||||
First introduction to views and dependent pattern matching[^1].
|
|
||||||
|
|
||||||
- [Day 6](src/Years/Y2015/Day6.md)
|
- [Day 6](src/Years/Y2015/Day6.md)
|
||||||
|
|
||||||
Naive approach to handling the first 2d grid problem.
|
|
||||||
|
|
||||||
- [Day 7](src/Years/Y2015/Day7.md)
|
- [Day 7](src/Years/Y2015/Day7.md)
|
||||||
|
|
||||||
Introduces dependent maps and indexed type families.
|
|
||||||
|
|
||||||
- [Day 8](src/Years/Y2015/Day8.md)
|
- [Day 8](src/Years/Y2015/Day8.md)
|
||||||
|
|
||||||
Proper effectful parsers and non-determinism in effect stacks.
|
|
||||||
|
|
||||||
- [Day 9](src/Years/Y2015/Day9.md)
|
- [Day 9](src/Years/Y2015/Day9.md)
|
||||||
|
|
||||||
Naive approach to handling the first graph traversal problem.
|
|
||||||
|
|
||||||
- [Day 10](src/Years/Y2015/Day10.md)
|
- [Day 10](src/Years/Y2015/Day10.md)
|
||||||
|
|
||||||
Introduce our `Digits`, dependent pattern matching on integers as lists of
|
|
||||||
digits.
|
|
||||||
|
|
||||||
- [Day 11](src/Years/Y2015/Day11.md)
|
|
||||||
|
|
||||||
Introduces refinement types
|
|
||||||
|
|
||||||
## References
|
|
||||||
|
|
||||||
[^1]: Idris 2 Manual:
|
|
||||||
[Views and the "with" rule](https://idris2.readthedocs.io/en/latest/tutorial/views.html#views-and-the-with-rule)
|
|
||||||
|
|
|
@ -21,7 +21,6 @@ depends = base
|
||||||
, ansi
|
, ansi
|
||||||
, if-unsolved-implicit
|
, if-unsolved-implicit
|
||||||
, c-ffi
|
, c-ffi
|
||||||
, refined
|
|
||||||
|
|
||||||
-- modules to install
|
-- modules to install
|
||||||
modules = Runner
|
modules = Runner
|
||||||
|
|
371
src/Grid.md
Normal file
371
src/Grid.md
Normal file
|
@ -0,0 +1,371 @@
|
||||||
|
# 2D Grid utilities
|
||||||
|
|
||||||
|
Types and utilities for dealing with a 2D grid of things
|
||||||
|
|
||||||
|
We base our `Grid` type on `Data.Seq.Sized` from `contrib`, a finger tree based
|
||||||
|
collection that tracks its size in its type, since it provides somewhat
|
||||||
|
efficient random access and updates.
|
||||||
|
|
||||||
|
```idris
|
||||||
|
module Grid
|
||||||
|
|
||||||
|
import Data.Seq.Sized
|
||||||
|
import Data.Fin
|
||||||
|
import Data.Fin.Extra
|
||||||
|
import Data.List.Lazy
|
||||||
|
import Data.Zippable
|
||||||
|
import Data.Vect
|
||||||
|
import Data.String
|
||||||
|
import Decidable.Equality
|
||||||
|
|
||||||
|
%default total
|
||||||
|
```
|
||||||
|
|
||||||
|
## Coordinates
|
||||||
|
|
||||||
|
A coordinate is a pair of numbers both less than their respective bounds.
|
||||||
|
|
||||||
|
Since `Grid`s will always be non-empty in the contexts we will be using them in,
|
||||||
|
this type alias adds one to each of the bounds to ensure non-emptyness
|
||||||
|
|
||||||
|
```idris
|
||||||
|
public export
|
||||||
|
Coord : (rows, cols : Nat) -> Type
|
||||||
|
Coord rows cols = (Fin (S rows), Fin (S cols))
|
||||||
|
```
|
||||||
|
|
||||||
|
### Coordinate utility functions
|
||||||
|
|
||||||
|
Lazily generate all the coordinates for a given pair of bounds
|
||||||
|
|
||||||
|
Uses an internal helper function to generate a lazy list of all the fins of a
|
||||||
|
given bound in ascending order (`all`), and another to convert a lazy list of
|
||||||
|
`Fin` into a lazy list of pairs of `Fin`s.
|
||||||
|
|
||||||
|
The totality checker likes to go in the descending direction, since then it can
|
||||||
|
reason about values getting structurally "smaller", so it has issues with `all'`
|
||||||
|
moving in the ascending direction. We know this function is total because the
|
||||||
|
`acc < last` check will always eventually be triggered, since `Fin`s only have a
|
||||||
|
finite number of values.
|
||||||
|
|
||||||
|
We pull out an `assert_smaller` to tell Idris that the argument to the recursive
|
||||||
|
call is getting structurally smaller, which while not strictly correct, does
|
||||||
|
convey to the compiler that we are getting closer to our recursive base case and
|
||||||
|
that the function is thus total.
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
allCords : {rows, cols : Nat} -> LazyList (Coord rows cols)
|
||||||
|
allCords = concat . map row $ all
|
||||||
|
where
|
||||||
|
all : {n : Nat} -> LazyList (Fin (S n))
|
||||||
|
all = FZ :: all' FZ
|
||||||
|
where
|
||||||
|
all' : {n : Nat} -> (acc : Fin (S n)) -> LazyList (Fin (S n))
|
||||||
|
all' acc =
|
||||||
|
if acc < last
|
||||||
|
then finS acc :: all' (assert_smaller acc (finS acc))
|
||||||
|
else []
|
||||||
|
row : Fin (S rows) -> LazyList (Coord rows cols)
|
||||||
|
row r = map (\c => (r, c)) all
|
||||||
|
```
|
||||||
|
|
||||||
|
Add a given vector to a coordinate, returning `Nothing` if we go off the ends of
|
||||||
|
the bounds in the process.
|
||||||
|
|
||||||
|
To keep this function simple and reasonably efficient, we perform the arithmetic
|
||||||
|
in integer space, using `integerToFin` to fallably convert back to `Fin` space,
|
||||||
|
making use of the `Maybe` monad to keep the code clean.
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
step : {rows, cols : Nat} -> (input : Coord rows cols) -> (direction : (Integer, Integer))
|
||||||
|
-> Maybe (Coord rows cols)
|
||||||
|
step (row, col) (d_row, d_col) = do
|
||||||
|
let (row, col) = (finToInteger row, finToInteger col)
|
||||||
|
row <- integerToFin (row + d_row) (S rows)
|
||||||
|
col <- integerToFin (col + d_col) (S cols)
|
||||||
|
pure (row, col)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Grid
|
||||||
|
|
||||||
|
A grid is a `Seq` of `Seq`s with the given size bounds.
|
||||||
|
|
||||||
|
The inner `Seq`s are kept opaque to maintain flexability in the implementation
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
record Grid (rows, cols : Nat) (e : Type) where
|
||||||
|
constructor MkGrid
|
||||||
|
grid : Seq (S rows) (Seq (S cols) e)
|
||||||
|
%name Grid grid, grid2, grid3
|
||||||
|
```
|
||||||
|
|
||||||
|
### Constructors
|
||||||
|
|
||||||
|
Construct a `Grid` by filling every slot with identical copies of the provided
|
||||||
|
element
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
replicate : {rows, cols : Nat} -> (seed : e) -> Grid rows cols e
|
||||||
|
replicate seed =
|
||||||
|
let row = replicate (S cols) seed
|
||||||
|
grid = replicate (S rows) row
|
||||||
|
in MkGrid grid
|
||||||
|
```
|
||||||
|
|
||||||
|
Attempt to construct a `Grid` from a Foldable of Foldables. Will return
|
||||||
|
`Nothing` if either the rows are of heterogeneous size, or if either the rows or
|
||||||
|
columns are empty. Requires that the outer Foldable also be Traversable.
|
||||||
|
|
||||||
|
We make heavy use of the `Maybe` monad to keep the code clean here.
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
fromFoldable : Traversable a => Foldable a => Foldable b => a (b e) ->
|
||||||
|
Maybe (rows : Nat ** cols : Nat ** Grid rows cols e)
|
||||||
|
fromFoldable xs = do
|
||||||
|
-- First collect the number of rows from the outer foldable
|
||||||
|
let (S rows) = foldl (\acc, e => acc + 1) 0 xs
|
||||||
|
| _ => Nothing -- Return Nothing if there are no rows
|
||||||
|
-- Get the number of columns in the largest row in the inner foldable
|
||||||
|
let (S cols) = foldl (\acco, eo => max acco (foldl (\acci, ei => acci +1) 0 eo)) 0 xs
|
||||||
|
| _ => Nothing -- Return Nothing if all the rows are empty
|
||||||
|
-- Convert the rows by traversing our foldToSeq function over the outer foldable
|
||||||
|
xs <- traverse (foldToSeq (S cols)) xs
|
||||||
|
-- Reuse our foldToSeq helper function to convert the outer foldable
|
||||||
|
xs <- foldToSeq (S rows) xs
|
||||||
|
-- wrap it up and return
|
||||||
|
pure (rows ** cols ** MkGrid xs)
|
||||||
|
where
|
||||||
|
-- Convert each row to a seq using an intermediate list
|
||||||
|
foldToSeq : Foldable c => (n : Nat) -> c f -> Maybe (Seq n f)
|
||||||
|
foldToSeq n x =
|
||||||
|
let list = toList x
|
||||||
|
-- Check to see if the list is of the correct length, then rewrite the
|
||||||
|
-- output type to match if that's the case, otherwise return Nothing
|
||||||
|
in case decEq (length list) n of
|
||||||
|
Yes Refl => Just $ fromList list
|
||||||
|
No _ => Nothing
|
||||||
|
```
|
||||||
|
|
||||||
|
Construct a `Grid` from a non-empty `Vect` of non-empty `Vect`s. To keep the
|
||||||
|
function simple, we require that both the row and column dimension are known to
|
||||||
|
be non-zero before calling this constructor.
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
fromVect : Vect (S rows) (Vect (S cols) e) -> Grid rows cols e
|
||||||
|
fromVect xs = MkGrid . fromVect . map fromVect $ xs
|
||||||
|
```
|
||||||
|
|
||||||
|
Construct `Grid` containing the coordinate of the location in each location
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
coordinateGrid : {rows, cols : Nat} -> Grid rows cols (Coord rows cols)
|
||||||
|
coordinateGrid =
|
||||||
|
let row = fromVect $ allFins (S cols)
|
||||||
|
grid = zip (fromVect $ allFins (S rows)) (replicate _ row)
|
||||||
|
grid = map (\(x, xs) => map (x,) xs) grid
|
||||||
|
in MkGrid grid
|
||||||
|
```
|
||||||
|
|
||||||
|
### Accessors and Mutators
|
||||||
|
|
||||||
|
Get the value at a specific index in the grid
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
index : Coord rows cols -> Grid rows cols e -> e
|
||||||
|
index (row, col) grid =
|
||||||
|
index' (index' grid.grid row) col
|
||||||
|
```
|
||||||
|
|
||||||
|
Replace the value at a specific index in the grid
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
replaceAt : Coord rows cols -> e -> Grid rows cols e -> Grid rows cols e
|
||||||
|
replaceAt (row, col) x (MkGrid grid) =
|
||||||
|
let r = index' grid row
|
||||||
|
r = update (finToNat col) x r @{elemSmallerThanBound col}
|
||||||
|
grid = update (finToNat row) r grid @{elemSmallerThanBound row}
|
||||||
|
in MkGrid grid
|
||||||
|
```
|
||||||
|
|
||||||
|
Update the value at a specific index in the grid
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
updateAt : Coord rows cols -> (e -> e) -> Grid rows cols e -> Grid rows cols e
|
||||||
|
updateAt (row, col) f (MkGrid grid) =
|
||||||
|
let r = index' grid row
|
||||||
|
r = adjust f (finToNat col) r @{elemSmallerThanBound col}
|
||||||
|
grid = update (finToNat row) r grid @{elemSmallerThanBound row}
|
||||||
|
in MkGrid grid
|
||||||
|
```
|
||||||
|
|
||||||
|
Lazily provide all the values in the grid as a flat collection
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
flat : {rows, cols : Nat} -> Grid rows cols e -> LazyList e
|
||||||
|
flat (MkGrid grid) =
|
||||||
|
let grid = seqToLazy . map (seqToLazy {n = S cols}) $ grid
|
||||||
|
grid = grid []
|
||||||
|
in foldrLazy (\a, acc => a acc) [] grid
|
||||||
|
where
|
||||||
|
seqToLazy : {n : Nat} -> (seq : Seq n a) -> (rest : LazyList a) -> LazyList a
|
||||||
|
seqToLazy {n = 0} seq rest = rest
|
||||||
|
seqToLazy {n = (S k)} seq rest =
|
||||||
|
let (head, tail) = viewl seq
|
||||||
|
in head :: seqToLazy tail rest
|
||||||
|
```
|
||||||
|
|
||||||
|
### Interface Implementations
|
||||||
|
|
||||||
|
#### Show
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
{rows, cols : Nat} -> Show e => Show (Grid rows cols e) where
|
||||||
|
show (MkGrid grid) =
|
||||||
|
show . toVect . map toVect $ grid
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Eq/Ord
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
Eq e => Eq (Grid rows cols e) where
|
||||||
|
(MkGrid grid_x) == (MkGrid grid_y) = grid_x == grid_y
|
||||||
|
|
||||||
|
export
|
||||||
|
Ord e => Ord (Grid rows cols e) where
|
||||||
|
compare (MkGrid grid_x) (MkGrid grid_y) = compare grid_x grid_y
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Functor
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
Functor (Grid rows cols) where
|
||||||
|
map f (MkGrid grid) =
|
||||||
|
MkGrid . map (map f) $ grid
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Foldable
|
||||||
|
|
||||||
|
Cheeze it a little and use our `flat` function internally here.
|
||||||
|
|
||||||
|
Also, `null` can statically return false, as `Grid` is structurally non-empty
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
{rows, cols : Nat} -> Foldable (Grid rows cols) where
|
||||||
|
foldr f acc grid = foldr f acc (flat grid)
|
||||||
|
foldl f acc grid = foldl f acc (flat grid)
|
||||||
|
null _ = False
|
||||||
|
toList grid = toList (flat grid)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Applicative
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
{rows, cols : Nat} -> Applicative (Grid rows cols) where
|
||||||
|
pure a = replicate a
|
||||||
|
(MkGrid f) <*> (MkGrid grid) =
|
||||||
|
MkGrid . map (\(a,b) => a <*> b) . zip f $ grid
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Traversable
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
{rows, cols : Nat} -> Traversable (Grid rows cols) where
|
||||||
|
traverse f (MkGrid grid) =
|
||||||
|
map MkGrid . traverse (traverse f) $ grid
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Zippable
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
Zippable (Grid rows cols) where
|
||||||
|
zipWith f (MkGrid grid_x) (MkGrid grid_y) =
|
||||||
|
let xs = zip grid_x grid_y
|
||||||
|
in MkGrid . map (\(a,b) => zipWith f a b) $ xs
|
||||||
|
unzipWith f (MkGrid grid) =
|
||||||
|
let (xs, ys) = unzip . map (unzipWith f) $ grid
|
||||||
|
in (MkGrid xs, MkGrid ys)
|
||||||
|
zipWith3 f (MkGrid as) (MkGrid bs) (MkGrid cs) =
|
||||||
|
let xs = zip3 as bs cs
|
||||||
|
in MkGrid . map (\(a, b, c) => zipWith3 f a b c) $ xs
|
||||||
|
unzipWith3 f (MkGrid grid) =
|
||||||
|
let (a, b, c) = unzip3 . map (unzipWith3 f) $ grid
|
||||||
|
in (MkGrid a, MkGrid b, MkGrid c)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Extra
|
||||||
|
|
||||||
|
Extensions of the above functionality
|
||||||
|
|
||||||
|
#### Indexing
|
||||||
|
|
||||||
|
Convert this grid to one with both the index of the location and the element in
|
||||||
|
each location
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
indexed : {rows, cols : Nat} -> Grid rows cols e -> Grid rows cols (Coord rows cols, e)
|
||||||
|
indexed grid = zip coordinateGrid grid
|
||||||
|
```
|
||||||
|
|
||||||
|
Same as `flat` above, but indexed
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
flatIndexed : {rows, cols : Nat} -> Grid rows cols e -> LazyList (Coord rows cols, e)
|
||||||
|
flatIndexed = flat . indexed
|
||||||
|
```
|
||||||
|
|
||||||
|
#### String functionality
|
||||||
|
|
||||||
|
Attempts to convert a string, with newline delimited rows, to a grid of
|
||||||
|
characters
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
stringToGrid : String -> Maybe (rows : Nat ** cols : Nat ** Grid rows cols Char)
|
||||||
|
stringToGrid = fromFoldable . map (unpack . trim) . lines . trim
|
||||||
|
```
|
||||||
|
|
||||||
|
Converts a grid of chars to a string, delimiting the rows with newlines
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
gridToString : Grid rows cols Char -> String
|
||||||
|
gridToString (MkGrid grid) = unlines . toList . map (pack . toList) $ grid
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Conversion
|
||||||
|
|
||||||
|
Convert a grid to a vect of vects
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
toVects : {rows, cols : Nat} -> Grid rows cols e -> Vect (S rows) (Vect (S cols) e)
|
||||||
|
toVects (MkGrid grid) = toVect . map toVect $ grid
|
||||||
|
```
|
||||||
|
|
||||||
|
Convert a grid to a list of lists
|
||||||
|
|
||||||
|
```idris
|
||||||
|
export
|
||||||
|
toLists : Grid rows cols e -> List (List e)
|
||||||
|
toLists (MkGrid grid) = toList . map toList $ grid
|
||||||
|
```
|
|
@ -181,8 +181,8 @@ failures doing so.
|
||||||
## Handling the arguments and finding the input
|
## Handling the arguments and finding the input
|
||||||
|
|
||||||
Handle the verbosity flag, if it is set, hook our logger up to stderr, otherwise
|
Handle the verbosity flag, if it is set, hook our logger up to stderr, otherwise
|
||||||
blackhole the logs. Afterwards, use `logHandler` to introduce the `Logger` into
|
blackhole the logs. Afterwards, use `logHandler` to introduce the logging
|
||||||
the effects list.
|
`Writer` into the effects list.
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
-- If the verbose flag is set, hook up the logging writer to stderr
|
-- If the verbose flag is set, hook up the logging writer to stderr
|
||||||
|
@ -259,8 +259,8 @@ a `SolveError`, then print out the result, then return, closing out the program.
|
||||||
|
|
||||||
### Lower logging into the IO component of the effect
|
### Lower logging into the IO component of the effect
|
||||||
|
|
||||||
Makes use of `Logger`'s `handleLoggerIO` function to "lower" logging actions
|
This function uses the provided `String -> IO ()` to remove the `Writer` from
|
||||||
into `IO` within the effect.
|
the effects list by translating `tell` calls to IO actions within the effect.
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
-- Lowers logging into IO within the effect using the given IO function
|
-- Lowers logging into IO within the effect using the given IO function
|
||||||
|
|
|
@ -22,15 +22,16 @@ import public Util.Eff
|
||||||
# Effectful Parts
|
# Effectful Parts
|
||||||
|
|
||||||
The solution to each part of a day is run as an effectful computation, and as
|
The solution to each part of a day is run as an effectful computation, and as
|
||||||
the effect stack is meant to be the same across both parts, only varying in the
|
the available effects are meant to be the same across both parts, only varying
|
||||||
type of the error value for the `Except` effect, we construct a type level
|
in the type of the error value in the `Except` effect, I construct a type level
|
||||||
function to have a single source of truth. The `err` type can be any type with a
|
function to have a single source of truth for this. The `err` type can be any
|
||||||
`Show` implementation, but that constraint will be tacked on in the next step.
|
type with a `Show` implementation, but that constraint will be tacked on in the
|
||||||
|
next step.
|
||||||
|
|
||||||
The `Logger` effect is provided for logging, and a `Reader` effect is provided
|
A `Writer` effect is provided for logging, and a `Reader` effect is provided to
|
||||||
to pass in the input, to make the top level API a little bit cleaner. `IO` is
|
pass in the input, just to make the top level API a little bit cleaner. `IO` is
|
||||||
also provided, even though the part solutions themselves shouldn't really be
|
also provided, even though the part solutions themselves shouldn't really be
|
||||||
doing any IO, this will come in handy if a part needs `IO` for performance
|
doing any IO, this may come in handy if a part needs `IO` for performance
|
||||||
reasons.
|
reasons.
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
|
@ -45,19 +46,19 @@ PartEff err =
|
||||||
# The `Day` Record
|
# The `Day` Record
|
||||||
|
|
||||||
The `Day` type groups together an effectful `part1` computation, an optional
|
The `Day` type groups together an effectful `part1` computation, an optional
|
||||||
effectful `part2` computation, and the day number, with some type wrangling to
|
effectful `part2` computation, the day number, and does some type wrangling to
|
||||||
get the type system out of our way.
|
get the type system out of our way on this one.
|
||||||
|
|
||||||
`part1` and `part2` are allowed independent output and error types, and this
|
`part1` and `part2` are allowed independent output and error types, and this
|
||||||
record captures `Show` implementations for those output and error types so that
|
record captures `Show` implementations for those output and error types so that
|
||||||
we can display them in `Main`, where the `Day` is consumed, without having to
|
we can display them in `Main` where the `Day` is consumed without having to
|
||||||
actually know what the types are.
|
actually know what the types are.
|
||||||
|
|
||||||
It is often useful to pass a bit of context, such as the data structures
|
It is often useful to pass a bit of context, such as the data structures
|
||||||
resulting from parsing, between `part1` and `part2`. This is achieved through
|
resulting from parsing, between `part1` and `part2`, and this is achieved by the
|
||||||
the erased `ctx` type, which is totally opaque to the runner. The code in `Main`
|
erased `ctx` type, which is totally opaque here. The runner code in `Main` will
|
||||||
will provide the value of the `ctx` type produced as part of the output of
|
provide the value of the `ctx` type produced as part of the output of `part1` as
|
||||||
`part1` and as the input of `part2`.
|
the input of `part2`.
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
||| Model solving a single day
|
||| Model solving a single day
|
||||||
|
@ -79,9 +80,9 @@ record Day where
|
||||||
|
|
||||||
The default `MkDay` constructor is slightly cumbersome to use, always requiring
|
The default `MkDay` constructor is slightly cumbersome to use, always requiring
|
||||||
_something_ for the `part2` slot, even if there isn't a part 2 yet, and
|
_something_ for the `part2` slot, even if there isn't a part 2 yet, and
|
||||||
requiring that `part2` be wrapped in a `Just` when there is one. We provide a
|
requiring that `part2` be wrapped in a `Just` when there is one, so we provide a
|
||||||
pair of constructors for the case where there is only a `part1`, as well as one
|
pair of constructors for the case where there is only a `part1` and for where
|
||||||
for when there is a `part1` and a `part2`.
|
there is a `part1` and a `part2` that handle that for us.
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
namespace Day
|
namespace Day
|
||||||
|
@ -90,7 +91,8 @@ namespace Day
|
||||||
### First
|
### First
|
||||||
|
|
||||||
The `First` constructor only accepts a `part1`, it does the work of filling in
|
The `First` constructor only accepts a `part1`, it does the work of filling in
|
||||||
`part2` with `Nothing` and setting all of `part2`'s type arguments to `()`.
|
`part2` with `Nothing` and setting all of `part2`'s type arguments to `()` for
|
||||||
|
us.'
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
||| Constructor for a day with only part one ready to run
|
||| Constructor for a day with only part one ready to run
|
||||||
|
@ -104,8 +106,8 @@ The `First` constructor only accepts a `part1`, it does the work of filling in
|
||||||
|
|
||||||
### Both
|
### Both
|
||||||
|
|
||||||
The `Both` constructor does less heavy lifting, the only thing it needs to do is
|
The `Both` constructor does a little bit less heavy lifting, the only thing it
|
||||||
wrap `part2` in a `Just`.
|
needs to do for us is wrap `part2` in a `Just`.
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
||| Constructor for a day with both parts ready to run
|
||| Constructor for a day with both parts ready to run
|
||||||
|
@ -121,17 +123,16 @@ wrap `part2` in a `Just`.
|
||||||
## Freshness
|
## Freshness
|
||||||
|
|
||||||
We will be using a _Fresh List_ from the
|
We will be using a _Fresh List_ from the
|
||||||
[structures](https://git.sr.ht/~thatonelutenist/Structures) package to build our
|
[structures](https://git.sr.ht/~thatonelutenist/Structures) package to build
|
||||||
API defensively against duplicate days and cosmetically annoying out of order
|
defensiveness into the API. A Fresh List structurally only allows you to prepend
|
||||||
day registration. A Fresh List structurally only allows you to prepend/cons an
|
an element onto it when it satisfies some _freshness_ criteria relative to the
|
||||||
element onto it when it satisfies some _freshness criteria_ relative to the
|
elements already in the list.
|
||||||
elements already contained in the list.
|
|
||||||
|
|
||||||
We compare the day numbers of the two `Day`s using the less-than(`<`)
|
Here, we compare the day numbers of the two `Day`s using the less-than
|
||||||
relationship. Since we are operating on the start of the list when this
|
relationship. Since we are operating on the start of the list when this
|
||||||
comparison takes place, this enforces, through type checking, that the resulting
|
comparison takes place, this enforces, through type checking, that the resulting
|
||||||
Fresh List of `Day`s is sorted in ascending order and that no two `Day`s have
|
Fresh List is sorted in ascending order and that no two `Day`s have the same day
|
||||||
the same day number.
|
number.
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
||| Freshness criteria for days
|
||| Freshness criteria for days
|
||||||
|
@ -149,7 +150,7 @@ FreshDay x y = x.day < y.day
|
||||||
# The `Year` Record
|
# The `Year` Record
|
||||||
|
|
||||||
The `Year` record collects a number of `Day`s into a single Fresh List for the
|
The `Year` record collects a number of `Day`s into a single Fresh List for the
|
||||||
year, also containing the year number for this collection.
|
year, and is mostly just a simple container.
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
||| Collect all the days in a given year
|
||| Collect all the days in a given year
|
||||||
|
@ -165,10 +166,9 @@ record Year where
|
||||||
|
|
||||||
Much like `Day`s are stored in a `FreshList` in `Year`, `Year`s will be stored
|
Much like `Day`s are stored in a `FreshList` in `Year`, `Year`s will be stored
|
||||||
in a `FreshList` in `Advent`, so we need to provide a freshness criteria for
|
in a `FreshList` in `Advent`, so we need to provide a freshness criteria for
|
||||||
`Year` as well.
|
`Year` as well. We do so by applying the less-than relationship against the year
|
||||||
|
number of the two `Years`, for the same reasons and with the same results as
|
||||||
We do so by applying the less-than relationship against the year number of the
|
with `FreshDay`.
|
||||||
two `Years`, for the same reasons and with the same results as with `FreshDay`.
|
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
||| Freshness criteria for years
|
||| Freshness criteria for years
|
||||||
|
@ -186,7 +186,8 @@ FreshYear x y = x.year < y.year
|
||||||
# The `Advent` Record
|
# The `Advent` Record
|
||||||
|
|
||||||
The `Advent` record collects a number of `Year`s in much the same way that
|
The `Advent` record collects a number of `Year`s in much the same way that
|
||||||
`Year` collects a number of days.
|
`Year` collects a number of days, sorting the `Year`s in a `FreshList` to
|
||||||
|
provide API defensiveness.
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
||| Collect all years
|
||| Collect all years
|
||||||
|
|
|
@ -22,18 +22,9 @@ import System.File
|
||||||
Basic enumeration describing log levels, we define some (hidden) utility
|
Basic enumeration describing log levels, we define some (hidden) utility
|
||||||
functions for working with these.
|
functions for working with these.
|
||||||
|
|
||||||
The `Other n` log level is restricted to `n` greater than 4, to prevent
|
|
||||||
ambiguity between custom log levels and predefined log levels.
|
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
public export
|
public export
|
||||||
data Level : Type where
|
data Level = Err | Warn | Info | Debug | Trace | Other Nat
|
||||||
Err : Level
|
|
||||||
Warn : Level
|
|
||||||
Info : Level
|
|
||||||
Debug : Level
|
|
||||||
Trace : Level
|
|
||||||
Other : (n : Nat) -> {auto _ : n `GT` 4} -> Level
|
|
||||||
```
|
```
|
||||||
|
|
||||||
<!-- idris
|
<!-- idris
|
||||||
|
@ -53,7 +44,7 @@ natToLevel 1 = Warn
|
||||||
natToLevel 2 = Info
|
natToLevel 2 = Info
|
||||||
natToLevel 3 = Debug
|
natToLevel 3 = Debug
|
||||||
natToLevel 4 = Trace
|
natToLevel 4 = Trace
|
||||||
natToLevel (S (S (S (S (S k))))) = Other (5 + k)
|
natToLevel k = Other k
|
||||||
|
|
||||||
export
|
export
|
||||||
Eq Level where
|
Eq Level where
|
||||||
|
@ -139,8 +130,10 @@ handleLoggerIO max_level x =
|
||||||
else pure . ignore $ x
|
else pure . ignore $ x
|
||||||
```
|
```
|
||||||
|
|
||||||
Provide a family of effectful actions that emit log messages at the different
|
Use the `WriterL "log" String` effect like a logging library. We'll provide a
|
||||||
log levels.
|
few "log levels" as verbs for the effect, but no filtering is done, when logging
|
||||||
|
is enabled, all logs are always displayed, however the log level is indicated
|
||||||
|
with a colored tag.
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
export
|
export
|
||||||
|
@ -162,10 +155,6 @@ debug x = send $ Log Debug x
|
||||||
export
|
export
|
||||||
trace : Has Logger fs => Lazy String -> Eff fs ()
|
trace : Has Logger fs => Lazy String -> Eff fs ()
|
||||||
trace x = send $ Log Trace x
|
trace x = send $ Log Trace x
|
||||||
|
|
||||||
export
|
|
||||||
logAt : Has Logger fs => Level -> Lazy String -> Eff fs ()
|
|
||||||
logAt level x = send $ Log level x
|
|
||||||
```
|
```
|
||||||
|
|
||||||
## Choose
|
## Choose
|
||||||
|
|
|
@ -17,7 +17,6 @@ import Years.Y2015.Day7
|
||||||
import Years.Y2015.Day8
|
import Years.Y2015.Day8
|
||||||
import Years.Y2015.Day9
|
import Years.Y2015.Day9
|
||||||
import Years.Y2015.Day10
|
import Years.Y2015.Day10
|
||||||
import Years.Y2015.Day11
|
|
||||||
-->
|
-->
|
||||||
|
|
||||||
# Days
|
# Days
|
||||||
|
@ -88,12 +87,6 @@ y2015 = MkYear 2015 [
|
||||||
, day10
|
, day10
|
||||||
```
|
```
|
||||||
|
|
||||||
## [Day 11](Y2015/Day11.md)
|
|
||||||
|
|
||||||
```idris
|
|
||||||
, day11
|
|
||||||
```
|
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# [Year 2015 Day 1](https://adventofcode.com/2015/day/1)
|
# Year 2015 Day 1
|
||||||
|
|
||||||
Pretty simple, basic warmup problem, nothing really novel is on display here
|
Pretty simple, basic warmup problem, nothing really novel is on display here
|
||||||
except the effectful part computations.
|
except the effectful part computations.
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# [Year 2015 Day 10](https://adventofcode.com/2015/day/10)
|
# Year 2015 Day 10
|
||||||
|
|
||||||
This day doesn't really add anything new, but we will show off our new views for
|
This day doesn't really add anything new, but we will show off our new views for
|
||||||
viewing integers as lists of digits.
|
viewing integers as lists of digits.
|
||||||
|
|
|
@ -1,227 +0,0 @@
|
||||||
# [Year 2015 Day 11](https://adventofcode.com/2015/day/11)
|
|
||||||
|
|
||||||
This day provides a gentle introduction to refinement types, types which augment
|
|
||||||
other types with a predicate that must hold for all the values of the refined
|
|
||||||
type, which allow easily defining types as subsets of other types based on some
|
|
||||||
property of the acceptable elements.
|
|
||||||
|
|
||||||
While refinement types are quite easy to implement in Idris, and we easily could
|
|
||||||
implement the one we need for today's task as a throw away data structure just
|
|
||||||
for this module, we will be using the `refined`[^1] library's implementation for
|
|
||||||
the sake of getting on with it.
|
|
||||||
|
|
||||||
<!-- idris
|
|
||||||
module Years.Y2015.Day11
|
|
||||||
|
|
||||||
import Control.Eff
|
|
||||||
|
|
||||||
import Runner
|
|
||||||
-->
|
|
||||||
|
|
||||||
```idris
|
|
||||||
import Data.Vect
|
|
||||||
import Data.String
|
|
||||||
import Data.Refined.Char
|
|
||||||
|
|
||||||
import Util
|
|
||||||
```
|
|
||||||
|
|
||||||
## Data Structures and Parsing
|
|
||||||
|
|
||||||
Provide a predicate which establishes that a char is a lowercase alphabetic
|
|
||||||
character, the only type of character that passwords are allowed to contain. We
|
|
||||||
use the `FromTo` predicate from the `refined`[^1] library to restrict chars to
|
|
||||||
within the range from `a` to `z`.
|
|
||||||
|
|
||||||
This predicate has multiplicity 0, a full discussion of multiplicites and linear
|
|
||||||
types is out of scope for today, but put simply this enforces that a value of
|
|
||||||
this predicate type can be "used" at most 0 times, having the effect of erasing
|
|
||||||
the value at runtime, making this more or less a zero-cost abstraction.
|
|
||||||
|
|
||||||
```idris
|
|
||||||
0 IsPasswordChar : Char -> Type
|
|
||||||
IsPasswordChar = FromTo 'a' 'z'
|
|
||||||
```
|
|
||||||
|
|
||||||
Combine a `Char` with its corresponding `IsPasswordChar` predicate into a
|
|
||||||
combined "refined" type, whose elements are the subset of `Char`s that are
|
|
||||||
lowercase alphabetic characters.
|
|
||||||
|
|
||||||
```idris
|
|
||||||
record PasswordChar where
|
|
||||||
constructor MkPC
|
|
||||||
char : Char
|
|
||||||
{auto 0 prf : IsPasswordChar char}
|
|
||||||
%name PasswordChar pc
|
|
||||||
```
|
|
||||||
|
|
||||||
<!-- idris
|
|
||||||
Show PasswordChar where
|
|
||||||
show (MkPC char) = singleton char
|
|
||||||
|
|
||||||
Eq PasswordChar where
|
|
||||||
x == y = x.char == y.char
|
|
||||||
-->
|
|
||||||
|
|
||||||
A function to fallible convert `Char`s into refined `PasswordChar`s, this will
|
|
||||||
return `Just` if the `Char` satisfies the predicate, and `Nothing` otherwise,
|
|
||||||
aligning with the type-level guarantees of the `PasswordChar` type.
|
|
||||||
|
|
||||||
```idris
|
|
||||||
refineChar : Char -> Maybe PasswordChar
|
|
||||||
refineChar c = map fromSubset $ refine0 c
|
|
||||||
where
|
|
||||||
fromSubset : Subset Char IsPasswordChar -> PasswordChar
|
|
||||||
fromSubset (Element char prf) = MkPC char
|
|
||||||
```
|
|
||||||
|
|
||||||
Convenience function returning `a` as a `PasswordChar`
|
|
||||||
|
|
||||||
```idris
|
|
||||||
lowest : PasswordChar
|
|
||||||
lowest = MkPC 'a'
|
|
||||||
```
|
|
||||||
|
|
||||||
"Increment" a `PasswordChar`, changing it to the next letter (`a` becomes `b`,
|
|
||||||
`b` becomes `c`, so on), returning nothing if we go past `z`, corresponding to a
|
|
||||||
carry.
|
|
||||||
|
|
||||||
We do this by converting the internal `Char` to an integer, adding one to it,
|
|
||||||
then converting back to a `Char`. This low-level conversion loses the refinement
|
|
||||||
context, forcing us to call `refineChar` on the new value to bring it back into
|
|
||||||
the refined type, providing us type-level assurance that this function will
|
|
||||||
return `Nothing` if an overflow occurs.
|
|
||||||
|
|
||||||
```idris
|
|
||||||
incriment : PasswordChar -> Maybe PasswordChar
|
|
||||||
incriment (MkPC char) =
|
|
||||||
let next = chr $ ord char + 1
|
|
||||||
in refineChar next
|
|
||||||
```
|
|
||||||
|
|
||||||
A `Password` is a `Vect` of 8 `PasswordChar`s. This `Vect` is sorted in reverse
|
|
||||||
order compared to the `String` it corresponds to, with the right-most letter
|
|
||||||
first, to make implementing the `incrimentPassword` function a little easier and
|
|
||||||
cleaner.
|
|
||||||
|
|
||||||
We also provide conversion to/from a `String`
|
|
||||||
|
|
||||||
```idris
|
|
||||||
Password : Type
|
|
||||||
Password = Vect 8 PasswordChar
|
|
||||||
|
|
||||||
parsePassword : Has (Except String) fs => String -> Eff fs Password
|
|
||||||
parsePassword str = do
|
|
||||||
cs <- note "Password has incorrect number of characters: \{str}"
|
|
||||||
. toVect 8 . reverse . unpack $ str
|
|
||||||
cs <- note "Password contained invalid characters: \{str}"
|
|
||||||
$ traverse refineChar cs
|
|
||||||
pure cs
|
|
||||||
|
|
||||||
passwordToString : Password -> String
|
|
||||||
passwordToString = pack . toList . reverse . map char
|
|
||||||
```
|
|
||||||
|
|
||||||
Define a function to increment a `Password`, this function will "roll over",
|
|
||||||
producing `aaaaaaaa` if provided `zzzzzzzz`.
|
|
||||||
|
|
||||||
```idris
|
|
||||||
incrimentPassword : Vect n PasswordChar -> Vect n PasswordChar
|
|
||||||
incrimentPassword [] = []
|
|
||||||
incrimentPassword (x :: xs) =
|
|
||||||
case incriment x of
|
|
||||||
Nothing => lowest :: incrimentPassword xs
|
|
||||||
Just x => x :: xs
|
|
||||||
```
|
|
||||||
|
|
||||||
### Password validity
|
|
||||||
|
|
||||||
A password must contain a run of at least 3 incrementing characters, check this
|
|
||||||
by converting the `PasswordChar`s to their integer representations. Remember
|
|
||||||
that our `Password` `Vect` is backwards compared to the string representation.
|
|
||||||
|
|
||||||
```idris
|
|
||||||
incrimentingChars : Vect n PasswordChar -> Bool
|
|
||||||
incrimentingChars (z :: next@(y :: (x :: xs))) =
|
|
||||||
let [x, y, z] : Vect _ Int = map (ord . char) [x, y, z]
|
|
||||||
in if y == x + 1 && z == y + 1
|
|
||||||
then True
|
|
||||||
else incrimentingChars next
|
|
||||||
incrimentingChars _ = False
|
|
||||||
```
|
|
||||||
|
|
||||||
A password may not contain `i`, `o`, or `l`
|
|
||||||
|
|
||||||
```idris
|
|
||||||
noInvalidChars : Vect n PasswordChar -> Bool
|
|
||||||
noInvalidChars = not . (any (flip contains $ ['i', 'o', 'l'])) . map char
|
|
||||||
```
|
|
||||||
|
|
||||||
A password contains at least two different non-overlapping pairs.
|
|
||||||
|
|
||||||
We check this by pattern matching our password two characters at a time,
|
|
||||||
consuming both characters if a matched pair is found, and tacking on the `Char`
|
|
||||||
the list is composed of to an accumulator list as we go. This list is then
|
|
||||||
reduced to only its unique elements (it's `nub`), and checking to see if it's
|
|
||||||
length is at least 2.
|
|
||||||
|
|
||||||
```idris
|
|
||||||
containsPairs : Vect n PasswordChar -> Bool
|
|
||||||
containsPairs xs = length (nub $ pairs (reverse xs) []) >= 2
|
|
||||||
where
|
|
||||||
pairs : Vect m PasswordChar -> (acc : List Char) -> List Char
|
|
||||||
pairs [] acc = acc
|
|
||||||
pairs (x :: []) acc = acc
|
|
||||||
pairs (x :: (y :: xs)) acc =
|
|
||||||
if x == y
|
|
||||||
-- If there is a pair, consume it to prevent detecting overlapping pairs
|
|
||||||
then pairs xs (x.char :: acc)
|
|
||||||
-- If there isn't a pair, only consume one character
|
|
||||||
else pairs (y :: xs) acc
|
|
||||||
```
|
|
||||||
|
|
||||||
Combine our password criteria into one function
|
|
||||||
|
|
||||||
```idris
|
|
||||||
part1Critera : Vect n PasswordChar -> Bool
|
|
||||||
part1Critera xs = incrimentingChars xs && noInvalidChars xs && containsPairs xs
|
|
||||||
```
|
|
||||||
|
|
||||||
### Find the next password
|
|
||||||
|
|
||||||
Find the next password based on a criteria function
|
|
||||||
|
|
||||||
```idris
|
|
||||||
findNextPassword :
|
|
||||||
(f : Vect n PasswordChar -> Bool) -> (password : Vect n PasswordChar)
|
|
||||||
-> Vect n PasswordChar
|
|
||||||
findNextPassword f password =
|
|
||||||
let next = incrimentPassword password
|
|
||||||
in if f next
|
|
||||||
then next
|
|
||||||
else findNextPassword f next
|
|
||||||
```
|
|
||||||
|
|
||||||
## Part Functions
|
|
||||||
|
|
||||||
### Part 1
|
|
||||||
|
|
||||||
```idris
|
|
||||||
part1 : Eff (PartEff String) (String, ())
|
|
||||||
part1 = do
|
|
||||||
input <- map trim $ askAt "input"
|
|
||||||
password <- parsePassword input
|
|
||||||
info "Starting password: \{show password} -> \{passwordToString password}"
|
|
||||||
let next_password = findNextPassword part1Critera password
|
|
||||||
pure (passwordToString next_password, ())
|
|
||||||
```
|
|
||||||
|
|
||||||
<!-- idris
|
|
||||||
public export
|
|
||||||
day11 : Day
|
|
||||||
day11 = First 11 part1
|
|
||||||
-->
|
|
||||||
|
|
||||||
## References
|
|
||||||
|
|
||||||
[^1]: https://github.com/stefan-hoeck/idris2-refined/
|
|
|
@ -1,4 +1,4 @@
|
||||||
# [Year 2015 Day 2](https://adventofcode.com/2015/day/2)
|
# Year 2015 Day 2
|
||||||
|
|
||||||
This day provides us our first little taste of effectful parsing
|
This day provides us our first little taste of effectful parsing
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# [Year 2015 Day 3](https://adventofcode.com/2015/day/3)
|
# Year 2015 Day 3
|
||||||
|
|
||||||
This day provides a gentle introduction to `mutual` blocks and mutually
|
This day provides a gentle introduction to `mutual` blocks and mutually
|
||||||
recursive functions.
|
recursive functions.
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# [Year 2015 Day 4](https://adventofcode.com/2015/day/4)
|
# Year 2015 Day 4
|
||||||
|
|
||||||
This day introduces us to a little bit of FFI, linking to openssl to use it's
|
This day introduces us to a little bit of FFI, linking to openssl to use it's
|
||||||
`MD5` functionality.
|
`MD5` functionality.
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# [Year 2015 Day 5](https://adventofcode.com/2015/day/5)
|
# Year 2015 Day 5
|
||||||
|
|
||||||
This day provides a nice chance to introduce
|
This day provides a nice chance to introduce
|
||||||
[views](https://idris2.readthedocs.io/en/latest/tutorial/views.html),
|
[views](https://idris2.readthedocs.io/en/latest/tutorial/views.html),
|
||||||
|
|
|
@ -1,8 +1,4 @@
|
||||||
# \[Year 2015 Day 6\](https://adventofcode.com/2015/day/
|
# Year 2015 Day 6
|
||||||
|
|
||||||
6.
|
|
||||||
|
|
||||||
Introduction to the advent of code classic 2d grid problem.
|
|
||||||
|
|
||||||
<!-- idris
|
<!-- idris
|
||||||
module Years.Y2015.Day6
|
module Years.Y2015.Day6
|
||||||
|
|
|
@ -1,6 +1,4 @@
|
||||||
# \[Year 2015 Day 7\](https://adventofcode.com/2015/day/
|
# Year 2015 Day 7
|
||||||
|
|
||||||
7.
|
|
||||||
|
|
||||||
This day provides us a gentle introduction to dependent maps.
|
This day provides us a gentle introduction to dependent maps.
|
||||||
|
|
||||||
|
@ -55,10 +53,7 @@ Input : Type
|
||||||
Input = Either Literal Wire
|
Input = Either Literal Wire
|
||||||
```
|
```
|
||||||
|
|
||||||
Description of a Gate, tagged in the type with the name of the output wire.
|
Description of a Gate, tagged in the type with the name of the output wire
|
||||||
|
|
||||||
This creates what is referred to as an "indexed type family", in this case a
|
|
||||||
family of `Gate` types indexed by values of type `Wire`.
|
|
||||||
|
|
||||||
```idris
|
```idris
|
||||||
data Gate : Wire -> Type where
|
data Gate : Wire -> Type where
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# [Year 2015 Day 8](https://adventofcode.com/2015/day/8)
|
# Year 2015 Day 8
|
||||||
|
|
||||||
This day provides a more in depth introduction to writing effectful parsers,
|
This day provides a more in depth introduction to writing effectful parsers,
|
||||||
making use of state and non-determinism in our parsers.
|
making use of state and non-determinism in our parsers.
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# [Year 2015 Day 9](https://adventofcode.com/2015/day/9)
|
# Year 2015 Day 9
|
||||||
|
|
||||||
This day provides our first example of a graph traversal problem. We'll use a
|
This day provides our first example of a graph traversal problem. We'll use a
|
||||||
`Choose` based effectful breath first search to identify all the possible paths
|
`Choose` based effectful breath first search to identify all the possible paths
|
||||||
|
|
Loading…
Add table
Reference in a new issue