Compare commits
6 commits
c632ab023d
...
f675677a76
Author | SHA1 | Date | |
---|---|---|---|
f675677a76 | |||
f8d6e3cfcb | |||
22eccd177c | |||
3addc0aeaf | |||
5ad68cdb44 | |||
ac93582e96 |
6 changed files with 460 additions and 46 deletions
|
@ -132,7 +132,13 @@ solution.
|
|||
|
||||
New Parser Effect stack and DLists
|
||||
|
||||
- [Day 13](src/Years/Y2015/Day13.md)
|
||||
|
||||
Naive ring buffer and `parameters` blocks[^2]
|
||||
|
||||
## References
|
||||
|
||||
[^1]: Idris 2 Manual:
|
||||
[Views and the "with" rule](https://idris2.readthedocs.io/en/latest/tutorial/views.html#views-and-the-with-rule)
|
||||
|
||||
[^2]: <https://idris2.readthedocs.io/en/latest/tutorial/modules.html#parameterised-blocks-parameters-blocks>
|
||||
|
|
|
@ -74,9 +74,9 @@ rm_rf "book";
|
|||
cp $tempdir.add("book"), "book", :r;
|
||||
|
||||
if $upload {
|
||||
my $rsync = run 'rsync', '-avzh', $tempdir.add("book").Str,
|
||||
'ubuntu@static.stranger.systems:/var/www/static.stranger.systems/idris-by-contrived-example';
|
||||
die "rsync went bad" unless $rsync;
|
||||
my $rsync = run 'rsync', '-avzh', $tempdir.add("book/").Str,
|
||||
'ubuntu@static.stranger.systems:/var/www/static.stranger.systems/idris-by-contrived-example';
|
||||
die "rsync went bad" unless $rsync;
|
||||
}
|
||||
|
||||
# This function goes at the end because it breaks emacs fontification after it
|
||||
|
|
|
@ -34,3 +34,4 @@
|
|||
- [Day 10 - Digits View](Years/Y2015/Day10.md)
|
||||
- [Day 11 - Refinement Types](Years/Y2015/Day11.md)
|
||||
- [Day 12 - Custom Parser Effect and DLists](Years/Y2015/Day12.md)
|
||||
- [Day 13 - Naive Ring Buffer and parameters blocks](Years/Y2015/Day13.md)
|
||||
|
|
223
src/Util.md
223
src/Util.md
|
@ -10,10 +10,50 @@ import Data.SortedSet
|
|||
import Data.String
|
||||
import Data.List.Lazy
|
||||
import Data.List1
|
||||
import Data.Vect
|
||||
import Data.Fin
|
||||
|
||||
%default total
|
||||
```
|
||||
|
||||
## Foldable
|
||||
|
||||
General utility functions for foldables
|
||||
|
||||
```idris hide
|
||||
namespace Foldable
|
||||
```
|
||||
|
||||
### minBy
|
||||
|
||||
```idris
|
||||
||| Get the minimum element of a collection using the provided comparison
|
||||
||| function and seed value
|
||||
export
|
||||
minBy : Foldable f => (cmp : a -> a -> Ordering) -> (acc : a) -> f a -> a
|
||||
minBy cmp acc x =
|
||||
foldl
|
||||
(\acc, e =>
|
||||
case e `cmp` acc of
|
||||
LT => e
|
||||
_ => acc)
|
||||
acc x
|
||||
```
|
||||
|
||||
```idris
|
||||
||| Get the maximum element of a collection using the provided comparison
|
||||
||| function and seed value
|
||||
export
|
||||
maxBy : Foldable f => (cmp : a -> a -> Ordering) -> (acc : a) -> f a -> a
|
||||
maxBy cmp acc x =
|
||||
foldl
|
||||
(\acc, e =>
|
||||
case e `cmp` acc of
|
||||
GT => e
|
||||
_ => acc)
|
||||
acc x
|
||||
```
|
||||
|
||||
## Functions
|
||||
|
||||
### repeatN
|
||||
|
@ -56,13 +96,13 @@ namespace List
|
|||
Returns `True` if the list contains the given value
|
||||
|
||||
```idris
|
||||
export
|
||||
contains : Eq a => a -> List a -> Bool
|
||||
contains x [] = False
|
||||
contains x (y :: xs) =
|
||||
if x == y
|
||||
then True
|
||||
else contains x xs
|
||||
export
|
||||
contains : Eq a => a -> List a -> Bool
|
||||
contains x [] = False
|
||||
contains x (y :: xs) =
|
||||
if x == y
|
||||
then True
|
||||
else contains x xs
|
||||
```
|
||||
|
||||
### rotations
|
||||
|
@ -76,16 +116,94 @@ rotations [1, 2, 3] == [[1, 2, 3], [3, 1, 2], [2, 3, 1]]
|
|||
```
|
||||
|
||||
```idris
|
||||
export
|
||||
rotations : List a -> List (List a)
|
||||
rotations xs = rotations' (length xs) xs []
|
||||
where
|
||||
rotations' : Nat -> List a -> (acc : List (List a)) -> List (List a)
|
||||
rotations' 0 xs acc = acc
|
||||
rotations' (S k) [] acc = acc
|
||||
rotations' (S k) (x :: xs) acc =
|
||||
let next = xs ++ [x]
|
||||
in rotations' k next (next :: acc)
|
||||
export
|
||||
rotations : List a -> List (List a)
|
||||
rotations xs = rotations' (length xs) xs []
|
||||
where
|
||||
rotations' : Nat -> List a -> (acc : List (List a)) -> List (List a)
|
||||
rotations' 0 xs acc = acc
|
||||
rotations' (S k) [] acc = acc
|
||||
rotations' (S k) (x :: xs) acc =
|
||||
let next = xs ++ [x]
|
||||
in rotations' k next (next :: acc)
|
||||
```
|
||||
|
||||
### permutations
|
||||
|
||||
Lazily generate all of the permutations of a list
|
||||
|
||||
```idris
|
||||
export
|
||||
permutations : List a -> LazyList (List a)
|
||||
permutations [] = pure []
|
||||
permutations xs = do
|
||||
(head, tail) <- select xs
|
||||
tail <- permutations (assert_smaller xs tail)
|
||||
pure $ head :: tail
|
||||
where
|
||||
consSnd : a -> (a, List a) -> (a, List a)
|
||||
consSnd x (y, xs) = (y, x :: xs)
|
||||
select : List a -> LazyList (a, List a)
|
||||
select [] = []
|
||||
select (x :: xs) = (x, xs) :: map (consSnd x) (select xs)
|
||||
```
|
||||
|
||||
## Vect
|
||||
|
||||
```idris hide
|
||||
namespace Vect
|
||||
```
|
||||
|
||||
### permutations
|
||||
|
||||
Lazily generate all the permutations of a Vect
|
||||
|
||||
```idris
|
||||
export
|
||||
permutations : Vect n a -> LazyList (Vect n a)
|
||||
permutations [] = []
|
||||
permutations [x] = [[x]]
|
||||
permutations (x :: xs) = do
|
||||
(head, tail) <- select (x :: xs)
|
||||
tail <- permutations tail
|
||||
pure $ head :: tail
|
||||
where
|
||||
consSnd : a -> (a, Vect m a) -> (a, Vect (S m) a)
|
||||
consSnd x (y, xs) = (y, x :: xs)
|
||||
select : Vect (S m) a -> LazyList (a, Vect m a)
|
||||
select [y] = [(y, [])]
|
||||
select (y :: (z :: ys)) =
|
||||
(y, z :: ys) :: map (consSnd y) (select (z :: ys))
|
||||
```
|
||||
|
||||
### minBy and maxBy
|
||||
|
||||
```idris
|
||||
||| Get the minimum element of a non-empty vector by using the provided
|
||||
||| comparison function
|
||||
export
|
||||
minBy : (f : a -> a -> Ordering) -> Vect (S n) a -> a
|
||||
minBy f (x :: xs) = Foldable.minBy f x xs
|
||||
|
||||
||| Get the maximum element of a non-empty vector by using the provided
|
||||
||| comparison function
|
||||
export
|
||||
maxBy : (f : a -> a -> Ordering) -> Vect (S n) a -> a
|
||||
maxBy f (x :: xs) = Foldable.maxBy f x xs
|
||||
```
|
||||
|
||||
## Fin
|
||||
|
||||
```idris hide
|
||||
namespace Fin
|
||||
```
|
||||
|
||||
```idris
|
||||
||| Decriment a Fin, wrapping on overflow
|
||||
export
|
||||
unfinS : {n : _} -> Fin n -> Fin n
|
||||
unfinS FZ = last
|
||||
unfinS (FS x) = weaken x
|
||||
```
|
||||
|
||||
## Vectors
|
||||
|
@ -166,20 +284,24 @@ off of the string at a time, checking if the needle is a prefix at each step.
|
|||
|
||||
### Cartesian product
|
||||
|
||||
```idris hide
|
||||
namespace LazyList
|
||||
```
|
||||
|
||||
Lazily take the cartesian product of two foldables
|
||||
|
||||
```idris
|
||||
export
|
||||
cartProd : Foldable a => Foldable b => a e -> b f -> LazyList (e, f)
|
||||
cartProd x y =
|
||||
let y = foldToLazy y
|
||||
in foldr (\e, acc => combine e y acc) [] x
|
||||
where
|
||||
foldToLazy : Foldable a' => a' e' -> LazyList e'
|
||||
foldToLazy x = foldr (\e, acc => e :: acc) [] x
|
||||
combine : e -> LazyList f -> LazyList (e, f) -> LazyList (e, f)
|
||||
combine x [] rest = rest
|
||||
combine x (y :: ys) rest = (x, y) :: combine x ys rest
|
||||
export
|
||||
cartProd : Foldable a => Foldable b => a e -> b f -> LazyList (e, f)
|
||||
cartProd x y =
|
||||
let y = foldToLazy y
|
||||
in foldr (\e, acc => combine e y acc) [] x
|
||||
where
|
||||
foldToLazy : Foldable a' => a' e' -> LazyList e'
|
||||
foldToLazy x = foldr (\e, acc => e :: acc) [] x
|
||||
combine : e -> LazyList f -> LazyList (e, f) -> LazyList (e, f)
|
||||
combine x [] rest = rest
|
||||
combine x (y :: ys) rest = (x, y) :: combine x ys rest
|
||||
```
|
||||
|
||||
### Concat
|
||||
|
@ -187,10 +309,10 @@ cartProd x y =
|
|||
Lazily concatenate a LazyList of LazyLists
|
||||
|
||||
```idris
|
||||
export
|
||||
lazyConcat : LazyList (LazyList a) -> LazyList a
|
||||
lazyConcat [] = []
|
||||
lazyConcat (x :: xs) = x ++ lazyConcat xs
|
||||
export
|
||||
lazyConcat : LazyList (LazyList a) -> LazyList a
|
||||
lazyConcat [] = []
|
||||
lazyConcat (x :: xs) = x ++ lazyConcat xs
|
||||
```
|
||||
|
||||
### Group
|
||||
|
@ -198,15 +320,30 @@ lazyConcat (x :: xs) = x ++ lazyConcat xs
|
|||
Lazily group a LazyList
|
||||
|
||||
```idris
|
||||
export
|
||||
lazyGroup : Eq a => LazyList a -> LazyList (List1 a)
|
||||
lazyGroup [] = []
|
||||
lazyGroup (x :: xs) = lazyGroup' xs x (x ::: [])
|
||||
where
|
||||
lazyGroup' : LazyList a -> (current : a) -> (acc : List1 a) -> LazyList (List1 a)
|
||||
lazyGroup' [] current acc = [acc]
|
||||
lazyGroup' (y :: ys) current acc@(head ::: tail) =
|
||||
if y == current
|
||||
then lazyGroup' ys current (head ::: (y :: tail))
|
||||
else acc :: lazyGroup (y :: ys)
|
||||
export
|
||||
lazyGroup : Eq a => LazyList a -> LazyList (List1 a)
|
||||
lazyGroup [] = []
|
||||
lazyGroup (x :: xs) = lazyGroup' xs x (x ::: [])
|
||||
where
|
||||
lazyGroup' : LazyList a -> (current : a) -> (acc : List1 a)
|
||||
-> LazyList (List1 a)
|
||||
lazyGroup' [] current acc = [acc]
|
||||
lazyGroup' (y :: ys) current acc@(head ::: tail) =
|
||||
if y == current
|
||||
then lazyGroup' ys current (head ::: (y :: tail))
|
||||
else acc :: lazyGroup (y :: ys)
|
||||
```
|
||||
|
||||
### length
|
||||
|
||||
Calculate the length of a LazyList
|
||||
|
||||
```idris
|
||||
export
|
||||
length : LazyList a -> Nat
|
||||
length = length' 0
|
||||
where
|
||||
length' : Nat -> LazyList a -> Nat
|
||||
length' k [] = k
|
||||
length' k (x :: xs) = length' (S k) xs
|
||||
```
|
||||
|
|
|
@ -19,6 +19,7 @@ import Years.Y2015.Day9
|
|||
import Years.Y2015.Day10
|
||||
import Years.Y2015.Day11
|
||||
import Years.Y2015.Day12
|
||||
import Years.Y2015.Day13
|
||||
```
|
||||
|
||||
# Days
|
||||
|
@ -101,6 +102,12 @@ y2015 = MkYear 2015 [
|
|||
, day12
|
||||
```
|
||||
|
||||
## [Day 13](Y2015/Day13.md)
|
||||
|
||||
```idris
|
||||
, day13
|
||||
```
|
||||
|
||||
```idris
|
||||
]
|
||||
```
|
||||
|
|
263
src/Years/Y2015/Day13.md
Normal file
263
src/Years/Y2015/Day13.md
Normal file
|
@ -0,0 +1,263 @@
|
|||
# [Year 2015 Day 13](https://adventofcode.com/2015/day/13)
|
||||
|
||||
This day exhibits a naive, `Vect` based implementation of a ring buffer, as well
|
||||
as our first introduction to `parameters` blocks.
|
||||
|
||||
```idris hide
|
||||
module Years.Y2015.Day13
|
||||
|
||||
import Data.Primitives.Interpolation
|
||||
|
||||
import Control.Eff
|
||||
|
||||
import Runner
|
||||
```
|
||||
|
||||
```idris
|
||||
import Data.String
|
||||
import Data.List1
|
||||
import Data.List.Lazy
|
||||
import Data.Vect
|
||||
import Data.Maybe
|
||||
import Data.SortedMap.Dependent
|
||||
import Decidable.Equality
|
||||
|
||||
import Util
|
||||
|
||||
%default total
|
||||
```
|
||||
|
||||
## Parsing and Data Structures
|
||||
|
||||
```idris
|
||||
Name : Type
|
||||
Name = String
|
||||
|
||||
Happiness : Type
|
||||
Happiness = Integer
|
||||
```
|
||||
|
||||
Describe a change in happiness from a change in seating arrangement as data
|
||||
structure, indexed by the name of the individual whose happiness it describes,
|
||||
and provide some projections.
|
||||
|
||||
```idris
|
||||
data Change : (changee : Name) -> Type where
|
||||
NextTo : (changee : Name) -> (other : Name) -> (amount : Happiness)
|
||||
-> Change (changee)
|
||||
|
||||
(.changee) : Change changee -> Name
|
||||
(.changee) (NextTo changee _ _) = changee
|
||||
|
||||
(.other) : Change changee -> Name
|
||||
(.other) (NextTo _ other _) = other
|
||||
|
||||
(.amount) : Change changee -> Happiness
|
||||
(.amount) (NextTo _ _ amount) = amount
|
||||
```
|
||||
|
||||
Collect the list of changes provided as input into a structure that encodes our
|
||||
assumptions at the type level.
|
||||
|
||||
The changes are stored in a in a dependent map, with the name of the individual
|
||||
as the key, and lists of potential changes to their happiness as the values.
|
||||
|
||||
This problem is a bit nicer to express in terms of a collection of known size,
|
||||
and we don't want to be constantly converting the keys list to a `Vect`, so we
|
||||
instead store it in `Changes` as a `Vect`. We don't want to accidentally store
|
||||
the wrong thing here, so we store an auto-implicit proof of equality,
|
||||
`keys_prf`, proving that the `names` list is exactly the list of keys in
|
||||
`change_map` converted to a Vect with `fromList`.
|
||||
|
||||
It will also make things a bit nicer if we can assume that our `names` list is
|
||||
non-empty, after all it really doesn't make sense to talk about seating
|
||||
arrangements at a table with 0 people at it, so we store an auto-implict
|
||||
`nonempty` proof establishing that the length of `change_map`'s keys list, and
|
||||
thus `names`, is at least 1.
|
||||
|
||||
```idris
|
||||
record Changes where
|
||||
constructor MkChanges
|
||||
change_map : SortedDMap Name (\n => List (Change n))
|
||||
names : Vect (length (keys change_map)) Name
|
||||
{auto keys_prf : names = fromList (keys change_map)}
|
||||
{auto nonempty : IsSucc (length (keys change_map))}
|
||||
```
|
||||
|
||||
Our usual pattern-matching based parsing of one element of the input, returning
|
||||
a dependent pair of the name of the individual this record describes, and the
|
||||
change described by that record.
|
||||
|
||||
```idris
|
||||
parseChange : Has (Except String) fs =>
|
||||
String -> Eff fs (name ** Change name)
|
||||
parseChange str = do
|
||||
changee ::: [_, direction, amount, _, _, _, _, _, _, other]
|
||||
<- pure $ split (== ' ') str
|
||||
| _ => throw "Invalid input string \{str}"
|
||||
amount <- note "Invalid amount \{amount} in \{str}" $ parseInteger amount
|
||||
amount : Happiness <-
|
||||
case direction of
|
||||
"gain" => pure amount
|
||||
"lose" => pure $ negate amount
|
||||
x => throw "Invalid direction \{x} in \{str}"
|
||||
let other = pack . filter (/= '.') . unpack $ other
|
||||
pure (_ ** (changee `NextTo` other) amount)
|
||||
```
|
||||
|
||||
Parse the entire list of changes in the input, collecting them into a dependent
|
||||
map as we go along, and performing the checks needed for Idris to be satisfied
|
||||
that the conditions encoded by the auto-implict proofs in `Changes` are met.
|
||||
|
||||
```idris
|
||||
parseChanges : Has (Except String) fs =>
|
||||
List String -> (seed : SortedDMap Name (\n => List (Change n)))
|
||||
-> Eff fs Changes
|
||||
parseChanges strs seed = do
|
||||
changes <- traverse parseChange strs
|
||||
let change_map = insertChanges changes seed
|
||||
case isItSucc (length (keys change_map)) of
|
||||
Yes prf => pure $ MkChanges change_map (fromList (keys change_map))
|
||||
No contra => throw "Empty table, not very interesting"
|
||||
where
|
||||
insertChanges : List (name ** Change name)
|
||||
-> (acc : SortedDMap Name (\n => List (Change n)))
|
||||
-> SortedDMap Name (\n => List (Change n))
|
||||
insertChanges [] acc = acc
|
||||
insertChanges ((name ** change) :: xs) acc =
|
||||
case lookupPrecise name acc of
|
||||
Nothing => insertChanges xs (insert name [change] acc)
|
||||
Just ys => insertChanges xs (insert name (change :: ys) acc)
|
||||
```
|
||||
|
||||
## Solver functions
|
||||
|
||||
All of these functions are about to take the same first argument,
|
||||
`(cs : Changes)`. This is a really common occurrence, especially when dealing
|
||||
with dependent proof types, so Idris has syntax sugar to avoid repeating your
|
||||
self in theses situations, `parameters` blocks[^1].
|
||||
|
||||
A `parameters` block adds the provided arguments to the start of every top level
|
||||
signature contained within it, in this case, making the first argument of all of
|
||||
these functions have type `(cs : Changes)`. The arguments to the `parameters`
|
||||
blocks are also added to the front of the arguments list, using the names
|
||||
provided in the signature.
|
||||
|
||||
`parameters` blocks also provide another fun bit of functionality that makes
|
||||
code within them more concise, within a `parameters` block, the parameters are
|
||||
implicitly passed as arguments to calls to functions in the same block.
|
||||
|
||||
```idris
|
||||
parameters (cs : Changes)
|
||||
```
|
||||
|
||||
Calculate the happiness change for a given person in a seating arrangement, use
|
||||
`finS` and `unfinS` to get the indexes of the parties seated to either side of
|
||||
us, and look them up in our map, adding the amount of change described by them
|
||||
together.
|
||||
|
||||
Notice how `cs` appears neither in the arguments list, nor the type signature,
|
||||
yet we can still refer to it as if it was included at the start of both.
|
||||
|
||||
```idris
|
||||
happinessFor :
|
||||
(arrangement : Vect (length (keys cs.change_map)) Name)
|
||||
-> (idx : Fin (length (keys cs.change_map)))
|
||||
-> Happiness
|
||||
happinessFor arrangement idx =
|
||||
let name = idx `index` arrangement
|
||||
in case name `lookupPrecise` cs.change_map of
|
||||
Nothing => 0
|
||||
Just changes =>
|
||||
let name_right = (finS idx) `index` arrangement
|
||||
change_right =
|
||||
fromMaybe 0 . map (.amount) . find ((== name_right) . (.other)) $
|
||||
changes
|
||||
name_left = (unfinS idx) `index` arrangement
|
||||
change_left =
|
||||
fromMaybe 0 . map (.amount) . find ((== name_left) . (.other)) $
|
||||
changes
|
||||
in change_right + change_left
|
||||
```
|
||||
|
||||
Calculate the overall happiness change for a given arrangement by mapping our
|
||||
`happinessFor` function over a list of all possible indexes to the `arrangement`
|
||||
vect, and summing the results.
|
||||
|
||||
Notice how the `cs` parameter is implicitly passed to `happinessFor`, as we are
|
||||
inside the same `parameters` block as it.
|
||||
|
||||
```idris
|
||||
happinessChange :
|
||||
(arrangement : Vect (length (keys cs.change_map)) Name)
|
||||
-> Happiness
|
||||
happinessChange arrangement =
|
||||
let idxes = List.allFins (length (keys cs.change_map))
|
||||
changes = map (happinessFor arrangement) idxes
|
||||
in sum changes
|
||||
```
|
||||
|
||||
Find the arrangement with the maximum total change in happiness by mapping
|
||||
`happinessChange` over a list of all the possible permutations of our seed
|
||||
arrangement described by `names`, and using `maxBy` to identify the largest
|
||||
positive change in overall happiness.
|
||||
|
||||
```idris
|
||||
maxHappiness : Has (Except String) fs =>
|
||||
Eff fs (Happiness, Vect (length (keys cs.change_map)) Name)
|
||||
maxHappiness =
|
||||
let arrangements = permutations cs.names
|
||||
changes = map happinessChange arrangements
|
||||
pairs = zip changes arrangements
|
||||
in case pairs of
|
||||
[] => throw "No arrangements"
|
||||
(x :: xs) => pure $ maxBy (compare `on` fst) x xs
|
||||
```
|
||||
|
||||
## Part Functions
|
||||
|
||||
### Part 1
|
||||
|
||||
Parse our input and feed it into our `maxHappiness` function.
|
||||
|
||||
Notice how, since we are outside the `parameters` block, we have to provide the
|
||||
`cs` argument to `maxHappiness` explicitly.
|
||||
|
||||
```idris
|
||||
part1 : Eff (PartEff String) (Happiness, ())
|
||||
part1 = do
|
||||
input <- map lines $ askAt "input"
|
||||
changes <- parseChanges input empty
|
||||
(max, arrangement) <- maxHappiness changes
|
||||
pure (max, ())
|
||||
```
|
||||
|
||||
### Part 2
|
||||
|
||||
Our implementation already replaces missing relationships with 0, so we can
|
||||
cheese this by injecting ourself with an empty relationship list into the
|
||||
`change_map : SortedDMap Name (\n => (List n))`.
|
||||
|
||||
The overall `Changes` data structure isn't easy to modify, and since our data
|
||||
set is quite small here, we'll just inject this into parsing and reparse our
|
||||
data.
|
||||
|
||||
```idris
|
||||
part2 : () -> Eff (PartEff String) Happiness
|
||||
part2 x = do
|
||||
input <- map lines $ askAt "input"
|
||||
let seed = insert "ME!!!!" [] empty
|
||||
changes <- parseChanges input seed
|
||||
(max, arrangement) <- maxHappiness changes
|
||||
pure max
|
||||
```
|
||||
|
||||
```idris hide
|
||||
public export
|
||||
day13 : Day
|
||||
day13 = Both 13 part1 part2
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
[^1]: <https://idris2.readthedocs.io/en/latest/tutorial/modules.html#parameterised-blocks-parameters-blocks>
|
Loading…
Add table
Reference in a new issue